
ElectrumX Documentation
Release ElectrumX 1.9.5

Neil Booth

Apr 03, 2019

Contents

1 Source Code 3

2 Authors and License 5

3 Getting Started 7

4 Documentation 9
4.1 Features . 9
4.2 Implementation . 9
4.3 Roadmap . 10
4.4 ChangeLog . 10
4.5 HOWTO . 14
4.6 Environment Variables . 20
4.7 Electrum Protocol . 25
4.8 Peer Discovery . 58
4.9 RPC Interface . 60
4.10 Architecture . 64
4.11 Authors . 66

5 Indices and tables 67

i

ii

ElectrumX Documentation, Release ElectrumX 1.9.5

A reimplementation of Electrum-Server for a future with bigger blocks.

The current version is ElectrumX 1.9.5.

Contents 1

https://travis-ci.org/kyuupichan/electrumx
https://coveralls.io/github/kyuupichan/electrumx

ElectrumX Documentation, Release ElectrumX 1.9.5

2 Contents

CHAPTER 1

Source Code

The project is hosted on GitHub. and uses Travis for Continuous Integration.

Please submit an issue on the bug tracker if you have found a bug or have a suggestion to improve the server.

3

https://github.com/kyuupichan/electrumx/
https://travis-ci.org/kyuupichan/electrumx
https://github.com/kyuupichan/electrumx/issues

ElectrumX Documentation, Release ElectrumX 1.9.5

4 Chapter 1. Source Code

CHAPTER 2

Authors and License

Neil Booth wrote the vast majority of the code; see Authors. Python version at least 3.6 is required.

The code is released under the MIT Licence.

5

https://github.com/kyuupichan/electrumx/LICENCE

ElectrumX Documentation, Release ElectrumX 1.9.5

6 Chapter 2. Authors and License

CHAPTER 3

Getting Started

See HOWTO.

There is also an installer available that simplifies the installation on various Linux-based distributions, and a Dockerfile
available .

7

https://github.com/bauerj/electrumx-installer
https://github.com/lukechilds/docker-electrumx

ElectrumX Documentation, Release ElectrumX 1.9.5

8 Chapter 3. Getting Started

CHAPTER 4

Documentation

4.1 Features

• Efficient, lightweight reimplementation of electrum-server

• Fast synchronization of bitcoin mainnet from Genesis. Recent hardware should synchronize in well under 24
hours. The fastest time to height 448k (mid January 2017) reported is under 4h 30m. On the same hardware
JElectrum would take around 4 days and electrum-server probably around 1 month.

• Various configurable means of controlling resource consumption and handling bad clients and denial of service
attacks. These include maximum connection counts, subscription limits per-connection and across all connec-
tions, maximum response size, per-session bandwidth limits, and session timeouts.

• Minimal resource usage once caught up and serving clients; tracking the transaction mempool appears to be the
most expensive part.

• Mostly asynchronous processing of new blocks, mempool updates, and client requests. Busy clients should not
noticeably impede other clients’ requests and notifications, nor the processing of incoming blocks and mempool
updates.

• Daemon failover. More than one daemon can be specified, and ElectrumX will failover round-robin style if the
current one fails for any reason.

• Peer discovery protocol removes need for IRC

• Coin abstraction makes compatible altcoin and testnet support easy.

4.2 Implementation

ElectrumX does not do any pruning or throwing away of history. I want to retain this property for as long as it is
feasible, and it appears efficiently achievable for the forseeable future with plain Python.

The following all play a part in making it efficient as a Python blockchain indexer:

• aggressive caching and batching of DB writes

9

ElectrumX Documentation, Release ElectrumX 1.9.5

• more compact and efficient representation of UTXOs, address index, and history. Electrum Server stores full
transaction hash and height for each UTXO, and does the same in its pruned history. In contrast ElectrumX just
stores the transaction number in the linear history of transactions. For at least another 5 years this transaction
number will fit in a 4-byte integer, and when necessary expanding to 5 or 6 bytes is trivial. ElectrumX can
determine block height from a simple binary search of tx counts stored on disk. ElectrumX stores historical
transaction hashes in a linear array on disk.

• placing static append-only metadata indexable by position on disk rather than in levelDB. It would be nice to do
this for histories but I cannot think of a way.

• avoiding unnecessary or redundant computations, such as converting address hashes to human-readable ASCII
strings with expensive bignum arithmetic, and then back again.

• better choice of Python data structures giving lower memory usage as well as faster traversal

• leveraging asyncio for asynchronous prefetch of blocks to mostly eliminate CPU idling. As a Python program
ElectrumX is unavoidably single-threaded in its essence; we must keep that CPU core busy.

Python’s asyncio means ElectrumX has no (direct) use for threads and associated complications.

4.3 Roadmap

• break ElectrumX up into simple services that initially can be run in separate processes on a single host. Then
support running them on different hosts, and finally support sharding. With this we can take advantage of
multiple cores and hosts, and scale to much larger block sizes. This should solve several issues with the current
history storage mechanism.

• fully asynchronous operation. At present too much is synchronous, such as file system access.

• protocol improvements targeting better client and server scalability to large wallets (100k addresses) and address
histories. Some aspects of the current protocol are very inefficient.

• investigate speaking the Bitcoin protocol and connecting to the Bitcoin network directly for some queries. This
could lead to ElectrumX being runnable with a node without a tx index, or a pruning node, or not needing to run
a node at all. ElectrumX would store all blocks itself and index the transactions therein.

• lifting internal limits such as maximum 4 billion transactions

• supporting better user privacy. I believe significantly improved user address privacy might be possible with
a simple addition to the protocol, and assuming a server network of which a reasonable fraction (40%?) are
cooperative and non-colluding

• new features such as possibly adding label or wallet server functionality

4.4 ChangeLog

Note: It is strongly recommended you upgrade to Python 3.7, which fixes bugs in asyncio that caused an ever-growing
open file count and memory consumption whilst serving clients. Those problems should not occur with Python 3.7.

4.4.1 Version 1.10.0 (15 Mar 2019)

• extra countermeasures to limit BTC phishing effectiveness (ghost43)

• peers: mark blacklisted peers bad; force retry blacklisted peers (ghost43)

10 Chapter 4. Documentation

ElectrumX Documentation, Release ElectrumX 1.9.5

• coin additions / updates: Monacoin (wakiyamap), Sparks (Mircea Rila), ColossusXT, Polis, MNPCoin, Zcoin,
GINCoin (cronos), Grosetlcoin (gruve-p), Dash (konez2k), Bitsend (David), Ravencoin (standard-error), Onix-
coin (Jose Estevez), SnowGem

• coin removals: Gobyte, Moneci (cronos)

• minor tweaks by d42

• issues fixed #660 - unclean shutdowns during initial sync

4.4.2 Version 1.9.5 (08 Feb 2019)

• server blacklist logic (ecdsa)

• require aiorpcX 0.10.4

• remove dead wallet code

• fix #727 - not listing same peer twice

4.4.3 Version 1.9.4 (07 Feb 2019)

• require aiorpcX 0.10.3

• fix #713

4.4.4 Version 1.9.3 (05 Feb 2019)

• ignore potential sybil peers

• coin additions / updates: BitcoinCashABC (cculianu), Monacoin (wakiyamap)

4.4.5 Version 1.9.2 (03 Feb 2019)

• restore protocol version 1.2 and send a warning for old BTC Electrum clients that they need to upgrade. This is
an attempt to protect users of old versions of Electrum from the ongoing phishing attacks

• increase default MAX_SEND for AuxPow Chains. Truncate AuxPow for block heights covered by a checkpoint.
(jeremyrand)

• coin additions / updates: NMC (jeremyrand), Dash (zebra-lucky), PeerCoin (peerchemist), BCH testnet (Mark
Lundeberg), Unitus (ChekaZ)

• tighter RPC param checking (ghost43)

4.4.6 Version 1.9.1 (11 Jan 2019)

• fix #684

4.4. ChangeLog 11

https://github.com/kyuupichan/electrumx/issues/660
https://github.com/kyuupichan/electrumx/issues/727
https://github.com/kyuupichan/electrumx/issues/713
https://github.com/kyuupichan/electrumx/issues/684

ElectrumX Documentation, Release ElectrumX 1.9.5

4.4.7 Version 1.9.0 (10 Jan 2019)

• minimum protocol version is now 1.4

• coin additions / updates: BitcoinSV, SmartCash (rc125), NIX (phamels), Minexcoin (joesixpack), BitcoinABC
(mblunderburg), Dash (zebra-lucky), BitcoinABCRegtest (ezegom), AXE (slowdive), NOR (flo071), Bitcoin-
Plus (bushsolo), Myriadcoin (cryptapus), Trezarcoin (ChekaZ), Bitcoin Diamond (John Shine),

• close #554, #653, #655

• other minor tweaks (Michael Schmoock, Michael Taborsky)

4.4.8 Version 1.8.12 (10 Nov 2018)

• bug fix

4.4.9 Version 1.8.11 (07 Nov 2018)

• require aiorpcX 0.10.1

4.4.10 Version 1.8.10 (05 Nov 2018)

• require aiorpcX 0.10.0

• fix #632

• coin additions / updates: ZelCash (TheTrunk)

4.4.11 Version 1.8.9 (02 Nov 2018)

• fix #630

4.4.12 Version 1.8.8 (01 Nov 2018)

• require aiorpcX 0.9.0

• coin additions / updates: decred (dajohi, bolapara), zcash (erasmospunk), namecoin (JeremyRand),CivX (tur-
col), NewYorkCoin (erasmospunk)

• fix #603, #608

• other minor fixes and changes: FMCorz

4.4.13 Version 1.8.7 (13 Sep 2018)

• require aiorpcX 0.8.1

• fix reorg bug loading blocks from disk (erasmospunk)

12 Chapter 4. Documentation

https://github.com/kyuupichan/electrumx/issues/554
https://github.com/kyuupichan/electrumx/issues/653
https://github.com/kyuupichan/electrumx/issues/655
https://github.com/kyuupichan/electrumx/issues/630
https://github.com/kyuupichan/electrumx/issues/630
https://github.com/kyuupichan/electrumx/issues/603
https://github.com/kyuupichan/electrumx/issues/608

ElectrumX Documentation, Release ElectrumX 1.9.5

4.4.14 Version 1.8.6 (12 Sep 2018)

• require aiorpcX 0.8.0

• suppress socket.send() errors

• new coin TokenPay (samfiragabriel)

• minor fix: wakiyamap

4.4.15 Version 1.8.5 (18 Aug 2018)

• require aiorpcX 0.7.3 which contains a couple of bugfixes

• fix #552, #577

• fixed a session limiting bug reported by ghost43

• coin additions / updates: PIVX and Decred Testnets, BitcoinGreen (cunhasb) Monacoin (wakayamap)

• proper generation input handling for various altcoins (erasmospunk) fixing #570

4.4.16 Version 1.8.4 (14 Aug 2018)

• improved notification handling and efficiency

• improved daemon handling with minor fixes; full tests for Daemon class

• remove chain_state class

• various internal cleanups and improvements (erasmospunk)

• add PIVX support (erasmospunk) - mempool handling WIP

• fix protocol 1.3 handling of blockchain.block.header RPC (ghost43)

4.4.17 Version 1.8.3 (11 Aug 2018)

• separate the DB and the BlockProcessor objects

• comprehensive mempool tests

• fix #521, #565, #567

4.4.18 Version 1.8.2 (09 Aug 2018)

• require aiorpcX 0.7.1 which along with an ElectrumX change restores clean shutdown and flush functionality,
particularly during initial sync

• fix #564

4.4.19 Version 1.8.1 (08 Aug 2018)

• require aiorpcX 0.7.0 which fixes a bug causing silent shutdown of ElectrumX

• fix #557, #559

• tweaks related to log spew (I think mostly occurring with old versions of Python)

4.4. ChangeLog 13

https://github.com/kyuupichan/electrumx/issues/552
https://github.com/kyuupichan/electrumx/issues/577
https://github.com/kyuupichan/electrumx/issues/570
https://github.com/kyuupichan/electrumx/issues/521
https://github.com/kyuupichan/electrumx/issues/565
https://github.com/kyuupichan/electrumx/issues/567
https://github.com/kyuupichan/electrumx/issues/564
https://github.com/kyuupichan/electrumx/issues/557
https://github.com/kyuupichan/electrumx/issues/559

ElectrumX Documentation, Release ElectrumX 1.9.5

4.4.20 Version 1.8 (06 Aug 2018)

• require aiorpcX 0.6.2

• fix query.py; move to contrib. Add query function to RPC

• rewrite electrumx_rpc so that proper command-line help is provided

• per-coin tx hash functions (erasmospunk)

• coin additions / updates: Groestlcoin (Kefkius, erasmospunk), Decred (erasmonpsunk)

• other minor (smmalis37)

Neil Booth kyuupichan@gmail.com https://github.com/kyuupichan

1BWwXJH3q6PRsizBkSGm2Uw4Sz1urZ5sCj

4.5 HOWTO

4.5.1 Prerequisites

ElectrumX should run on any flavour of unix. I have run it successfully on MacOS and DragonFlyBSD. It won’t run
out-of-the-box on Windows, but the changes required to make it do so should be small - pull requests are welcome.

Package Notes
Python3 ElectrumX uses asyncio. Python version >= 3.6 is required.
aiohttp Python library for asynchronous HTTP. Version >= 2.0 required.
pylru Python LRU cache package.
DB Engine A database engine package is required; two are supported (see Database Engine below).

Some coins need an additional package, typically for their block hash functions. For example, x11_hash is required
for DASH.

You must to be running a non-pruning bitcoin daemon with:

txindex=1

set in its configuration file. If you have an existing installation of bitcoind and have not previously set this you will
need to reindex the blockchain with:

bitcoind -reindex

which can take some time.

While not a requirement for running ElectrumX, it is intended to be run with supervisor software such as Daniel
Bernstein’s daemontools, Gerrit Pape’s runit package or systemd. These make administration of secure unix servers
very easy, and I strongly recommend you install one of these and familiarise yourself with them. The instructions
below and sample run scripts assume daemontools; adapting to runit should be trivial for someone used to
either.

When building the database from the genesis block, ElectrumX has to flush large quantities of data to disk and its DB.
You will have a better experience if the database directory is on an SSD than on an HDD. Currently to around height
447,100 of the Bitcoin blockchain the final size of the leveldb database, and other ElectrumX file metadata comes to
just over 18.7GB (17.5 GiB). LevelDB needs a bit more for brief periods, and the block chain is only getting longer,
so I would recommend having at least 30-40GB of free space before starting.

14 Chapter 4. Documentation

mailto:kyuupichan@gmail.com
https://github.com/kyuupichan
https://pypi.python.org/pypi/aiohttp
https://pypi.python.org/pypi/pylru
https://pypi.python.org/pypi/x11_hash
http://cr.yp.to/daemontools.html
http://smarden.org/runit/index.html

ElectrumX Documentation, Release ElectrumX 1.9.5

4.5.2 Database Engine

You can choose from LevelDB and RocksDB to store transaction information on disk. The time taken and DB size is
not significantly different. We tried to support LMDB but its history write performance was much worse.

You will need to install one of:

• plyvel for LevelDB

• python-rocksdb for RocksDB (pip3 install python-rocksdb)

• pyrocksdb for an unmaintained version that doesn’t work with recent releases of RocksDB

4.5.3 Running

Install the prerequisites above.

Check out the code from Github:

git clone https://github.com/kyuupichan/electrumx.git
cd electrumx

You can install with setup.py or run the code from the source tree or a copy of it.

You should create a standard user account to run the server under; your own is probably adequate unless paranoid.
The paranoid might also want to create another user account for the daemontools logging process. The sample scripts
and these instructions assume it is all under one account which I have called electrumx.

Next create a directory where the database will be stored and make it writeable by the electrumx account. I
recommend this directory live on an SSD:

mkdir /path/to/db_directory
chown electrumx /path/to/db_directory

Process limits

You must ensure the ElectrumX process has a large open file limit. During sync it should not need more than about
1,024 open files. When serving it will use approximately 256 for LevelDB plus the number of incoming connections.
It is not unusual to have 1,000 to 2,000 connections being served, so I suggest you set your open files limit to at least
2,500.

Note that setting the limit in your shell does NOT affect ElectrumX unless you are invoking ElectrumX di-
rectly from your shell. If you are using systemd, you need to set it in the .service file (see con-
trib/systemd/electrumx.service).

Using daemontools

Next create a daemontools service directory; this only holds symlinks (see daemontools documentation). The svscan
program will ensure the servers in the directory are running by launching a supervise supervisor for the server and
another for its logging process. You can run svscan under the electrumx account if that is the only one involved
(server and logger) otherwise it will need to run as root so that the user can be switched to electrumx.

Assuming this directory is called service, you would do one of:

mkdir /service # If running svscan as root
mkdir ~/service # As electrumx if running svscan as that a/c

4.5. HOWTO 15

https://plyvel.readthedocs.io/en/latest/installation.html
https://pypi.python.org/pypi/python-rocksdb
http://pyrocksdb.readthedocs.io/en/v0.4/installation.html
https://github.com/kyuupichan/electrumx/blob/master/contrib/systemd/electrumx.service
https://github.com/kyuupichan/electrumx/blob/master/contrib/systemd/electrumx.service

ElectrumX Documentation, Release ElectrumX 1.9.5

Next create a directory to hold the scripts that the supervise process spawned by svscan will run - this directory
must be readable by the svscan process. Suppose this directory is called scripts, you might do:

mkdir -p ~/scripts/electrumx

Then copy the all sample scripts from the ElectrumX source tree there:

cp -R /path/to/repo/electrumx/contrib/daemontools ~/scripts/electrumx

This copies 3 things: the top level server run script, a log/ directory with the logger run script, an env/ directory.

You need to configure the environment variables under env/ to your setup. ElectrumX server currently takes no
command line arguments; all of its configuration is taken from its environment which is set up according to env/
directory (see envdir man page). Finally you need to change the log/run script to use the directory where you
want the logs to be written by multilog. The directory need not exist as multilog will create it, but its parent
directory must exist.

Now start the svscan process. This will not do much as the service directory is still empty:

svscan ~/service & disown

svscan is now waiting for services to be added to the directory:

cd ~/service
ln -s ~/scripts/electrumx electrumx

Creating the symlink will kick off the server process almost immediately. You can see its logs with:

tail -F /path/to/log/dir/current | tai64nlocal

Using systemd

This repository contains a sample systemd unit file that you can use to setup ElectrumX with systemd. Simply copy it
to /etc/systemd/system:

cp contrib/systemd/electrumx.service /etc/systemd/system/

The sample unit file assumes that the repository is located at /home/electrumx/electrumx. If that differs on
your system, you need to change the unit file accordingly.

You need to set a few environment variables in /etc/electrumx.conf.

Now you can start ElectrumX using systemctl:

systemctl start electrumx

You can use journalctl to check the log output:

journalctl -u electrumx -f

Once configured you may want to start ElectrumX at boot:

systemctl enable electrumx

16 Chapter 4. Documentation

ElectrumX Documentation, Release ElectrumX 1.9.5

Warning: systemd is aggressive in forcibly shutting down processes. Depending on your hardware, ElectrumX
can need several minutes to flush cached data to disk during initial sync. You should set TimeoutStopSec to at
least 10 mins in your .service file.

Installing Python 3.6 under Ubuntu

Many Ubuntu distributions have an incompatible Python version baked in. Because of this, it is easier to install Python
3.6. See contrib/python3.6/python-3.6.sh.

Installing on Raspberry Pi 3

To install on the Raspberry Pi 3 you will need to update to the stretch distribution. See the full procedure in
contrib/raspberrypi3/install_electrumx.sh.

See also contrib/raspberrypi3/run_electrumx.sh for an easy way to configure and launch electrumx.

4.5.4 Sync Progress

Time taken to index the blockchain depends on your hardware of course. As Python is single-threaded most of the
time only 1 core is kept busy. ElectrumX uses Python’s asyncio to prefill a cache of future blocks asynchronously
to keep the CPU busy processing the chain without pausing.

Consequently there will probably be only a minor boost in performance if the daemon is on the same host. It may even
be beneficial to have the daemon on a separate machine so the machine doing the indexing has its caches and disk I/O
tuned to that task only.

The CACHE_MB environment variable controls the total cache size ElectrumX uses; see here for caveats.

Here is my experience with the codebase of early 2017 (the current codebase is faster), to given heights and rough
wall-time. The period from heights 363,000 to 378,000 is the most sluggish:

Machine A Machine B
181,000 25m 00s 5m 30s
283,500 1h 00m
321,800 1h 40m
357,000 12h 32m 2h 41m
386,000 21h 56m 4h 25m
414,200 1d 12h 29m 6h 30m
447,168 2d 13h 20m 9h 47m

Machine A: a low-spec 2011 1.6GHz AMD E-350 dual-core fanless CPU, 8GB RAM and a DragonFlyBSD UFS
fileystem on an SSD. It requests blocks over the LAN from a bitcoind on machine B. DB_CACHE the default of 1,200.
LevelDB.

Machine B: a late 2012 iMac running Sierra 10.12.2, 2.9GHz quad-core Intel i5 CPU with an HDD and 24GB RAM.
Running bitcoind on the same machine. DB_CACHE set to 1,800. LevelDB.

For chains other than bitcoin-mainnet sychronization should be much faster.

Note: ElectrumX will not serve normal client connections until it has fully synchronized and caught up with your
daemon. However LocalRPC connections are served at all times.

4.5. HOWTO 17

https://github.com/kyuupichan/electrumx/blob/master/contrib/python3.6/python-3.6.sh
https://github.com/kyuupichan/electrumx/blob/master/contrib/raspberrypi3/install_electrumx.sh
https://github.com/kyuupichan/electrumx/blob/master/contrib/raspberrypi3/run_electrumx.sh

ElectrumX Documentation, Release ElectrumX 1.9.5

4.5.5 Terminating ElectrumX

The preferred way to terminate the server process is to send it the stop RPC command:

electrumx_rpc stop

or alternatively on Unix the INT or TERM signals. For a daemontools supervised process this can be done by bringing
it down like so:

svc -d ~/service/electrumx

ElectrumX will note receipt of the signals in the logs, and ensure the block chain index is flushed to disk before
terminating. You should be patient as flushing data to disk can take many minutes.

ElectrumX uses the transaction functionality, with fsync enabled, of the databases. I have written it with the intent
that, to the extent the atomicity guarantees are upheld by the DB software, the operating system, and the hardware, the
database should not get corrupted even if the ElectrumX process if forcibly killed or there is loss of power. The worst
case should be having to restart indexing from the most recent UTXO flush.

Once the process has terminated, you can start it up again with:

svc -u ~/service/electrumx

You can see the status of a running service with:

svstat ~/service/electrumx

svscan can of course handle multiple services simultaneously from the same service directory, such as a testnet or
altcoin server. See the man pages of these various commands for more information.

4.5.6 Understanding the Logs

You can see the logs usefully like so:

tail -F /path/to/log/dir/current | tai64nlocal

Here is typical log output on startup:

INFO:BlockProcessor:switching current directory to /crucial/server-good
INFO:BlockProcessor:using leveldb for DB backend
INFO:BlockProcessor:created new database
INFO:BlockProcessor:creating metadata diretcory
INFO:BlockProcessor:software version: ElectrumX 0.10.2
INFO:BlockProcessor:DB version: 5
INFO:BlockProcessor:coin: Bitcoin
INFO:BlockProcessor:network: mainnet
INFO:BlockProcessor:height: -1
INFO:BlockProcessor:tip:
→˓00
INFO:BlockProcessor:tx count: 0
INFO:BlockProcessor:sync time so far: 0d 00h 00m 00s
INFO:BlockProcessor:reorg limit is 200 blocks
INFO:Daemon:daemon at 192.168.0.2:8332/
INFO:BlockProcessor:flushing DB cache at 1,200 MB
INFO:Controller:RPC server listening on localhost:8000
INFO:Prefetcher:catching up to daemon height 447,187...

(continues on next page)

18 Chapter 4. Documentation

ElectrumX Documentation, Release ElectrumX 1.9.5

(continued from previous page)

INFO:Prefetcher:verified genesis block with hash
→˓000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f
INFO:BlockProcessor:our height: 9 daemon: 447,187 UTXOs 0MB hist 0MB
INFO:BlockProcessor:our height: 52,509 daemon: 447,187 UTXOs 9MB hist 14MB
INFO:BlockProcessor:our height: 85,009 daemon: 447,187 UTXOs 12MB hist 31MB
INFO:BlockProcessor:our height: 102,384 daemon: 447,187 UTXOs 15MB hist 47MB
[...]
INFO:BlockProcessor:our height: 133,375 daemon: 447,187 UTXOs 80MB hist 222MB
INFO:BlockProcessor:our height: 134,692 daemon: 447,187 UTXOs 96MB hist 250MB
INFO:BlockProcessor:flushed to FS in 0.7s
INFO:BlockProcessor:flushed history in 16.3s for 1,124,512 addrs
INFO:BlockProcessor:flush #1 took 18.7s. Height 134,692 txs: 941,963
INFO:BlockProcessor:tx/sec since genesis: 2,399, since last flush: 2,400
INFO:BlockProcessor:sync time: 0d 00h 06m 32s ETA: 1d 13h 03m 42s

Under normal operation these cache stats repeat once or twice a minute. UTXO flushes can take several minutes and
look like this:

INFO:BlockProcessor:our height: 378,745 daemon: 447,332 UTXOs 1,013MB hist 184MB
INFO:BlockProcessor:our height: 378,787 daemon: 447,332 UTXOs 1,014MB hist 194MB
INFO:BlockProcessor:flushed to FS in 0.3s
INFO:BlockProcessor:flushed history in 13.4s for 934,933 addrs
INFO:BlockProcessor:flushed 6,403 blocks with 5,879,440 txs, 2,920,524 UTXO adds, 3,
→˓646,572 spends in 93.1s, committing...
INFO:BlockProcessor:flush #120 took 226.4s. Height 378,787 txs: 87,695,588
INFO:BlockProcessor:tx/sec since genesis: 1,280, since last flush: 359
INFO:BlockProcessor:sync t ime: 0d 19h 01m 06s ETA: 3d 21h 17m 52s
INFO:BlockProcessor:our height: 378,812 daemon: 447,334 UTXOs 10MB hist 10MB

The ETA shown is just a rough guide and in the short term can be quite volatile. It tends to be a little optimistic at first;
once you get to height 280,000 is should be fairly accurate.

4.5.7 Creating a self-signed SSL certificate

These instructions are based on those of the electrum-server documentation.

To run an SSL server you need to generate a self-signed certificate using openssl. Alternatively you could not set
SSL_PORT in the environment and not serve over SSL, but this is not recommended.

Use the sample code below to create a self-signed cert with a recommended validity of 5 years. You may supply any
information for your sign request to identify your server. They are not currently checked by the client except for the
validity date. When asked for a challenge password just leave it empty and press enter:

$ openssl genrsa -out server.key 2048
$ openssl req -new -key server.key -out server.csr
...
Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:California
Common Name (eg, YOUR name) []: electrum-server.tld
...
A challenge password []:
...
$ openssl x509 -req -days 1825 -in server.csr -signkey server.key -out server.crt

The server.crt file goes in SSL_CERTFILE and server.key in SSL_KEYFILE in the server process’s envi-
ronment.

4.5. HOWTO 19

ElectrumX Documentation, Release ElectrumX 1.9.5

Starting with Electrum 1.9, the client will learn and locally cache the SSL certificate for your server upon the first
request to prevent man-in-the middle attacks for all further connections.

If your certificate is lost or expires on the server side, you will need to run your server with a different server name
and a new certificate. Therefore it’s a good idea to make an offline backup copy of your certificate and key in case you
need to restore them.

4.5.8 Running on a privileged port

You may choose to run electrumx on a different port than 50001 / 50002. If you choose a privileged port (< 1024) it
makes sense to make use of a iptables NAT rule.

An example, which will forward Port 110 to the internal port 50002 follows:

iptables -t nat -A PREROUTING -p tcp --dport 110 -j DNAT --to-destination 127.0.0.
→˓1:50002

You can then set the port as follows and advertise the service externally on the privileged port:

REPORT_SSL_PORT=110

4.6 Environment Variables

ElectrumX takes no command line arguments, instead its behaviour is controlled by environment variables. Only a
few are required to be given, the rest will have sensible defaults if not specified. Many of the defaults around resource
usage are conservative; I encourage you to review them.

Note: by default the server will only serve to connections from the same machine. To be accessible to other users
across the internet you must set HOST appropriately; see below.

4.6.1 Required

These environment variables are always required:

COIN
Must be a NAME from one of the Coin classes in lib/coins.py.

DB_DIRECTORY
The path to the database directory. Relative paths should be relative to the parent process working directory.
This is the directory of the run script if you use it.

DAEMON_URL
A comma-separated list of daemon URLs. If more than one is provided ElectrumX will initially connect to the
first, and failover to subsequent ones round-robin style if one stops working.

The generic form of a daemon URL is:

http://username:password@hostname:port/

The leading http:// is optional, as is the trailing slash. The :port part is also optional and will default to
the standard RPC port for COIN and NET if omitted.

20 Chapter 4. Documentation

https://github.com/kyuupichan/electrumx/blob/master/electrumx/lib/coins.py

ElectrumX Documentation, Release ElectrumX 1.9.5

4.6.2 For the run script

The following are required if you use the run script:

ELECTRUMX
The path to the electrumx_server script. Relative paths should be relative to the directory of the run script.

USERNAME
The username the server will run as.

4.6.3 Miscellaneous

These environment variables are optional:

LOG_FORMAT
The Python logging format string to use. Defaults to %(levelname)s:%(name)s:%(message)s.

ALLOW_ROOT
Set this environment variable to anything non-empty to allow running ElectrumX as root.

NET
Must be a NET from one of the Coin classes in lib/coins.py. Defaults to mainnet.

DB_ENGINE
Database engine for the UTXO and history database. The default is leveldb. The other alternative is
rocksdb. You will need to install the appropriate python package for your engine. The value is not case
sensitive.

HOST
The host or IP address that the TCP and SSL servers will use when binding listening sockets. Defaults to
localhost. To listen on multiple specific addresses specify a comma-separated list. Set to an empty string to
listen on all available interfaces (likely both IPv4 and IPv6).

TCP_PORT
If set ElectrumX will serve TCP clients on HOST:TCP_PORT.

Note: ElectrumX will not serve TCP connections until it has fully caught up with your daemon.

SSL_PORT
If set ElectrumX will serve SSL clients on HOST:SSL_PORT. If set then SSL_CERTFILE and SSL_KEYFILE
must be defined environment variables with values the filesystem paths to those SSL files.

Note: ElectrumX will not serve SSL connections until it has fully caught up with your daemon.

RPC_HOST
The host or IP address that the RPC server will listen on and defaults to localhost. To listen on multiple
specific addresses specify a comma-separated list. Servers with unusual networking setups might want to specify
e.g. ::1 or 127.0.0.1 explicitly rather than defaulting to localhost.

An empty string (normally indicating all interfaces) is interpreted as localhost, because allowing access to
the server’s RPC interface to arbitrary connections across the internet is not a good idea.

RPC_PORT
ElectrumX will listen on this port for local RPC connections. ElectrumX listens for RPC connections unless
this is explicitly set to blank. The default depends on COIN and NET (e.g., 8000 for Bitcoin mainnet) if not set,
as indicated in lib/coins.py.

4.6. Environment Variables 21

https://docs.python.org/3/library/logging.html#logrecord-attributes
https://github.com/kyuupichan/electrumx/blob/master/electrumx/lib/coins.py
https://github.com/kyuupichan/electrumx/blob/master/electrumx/lib/coins.py

ElectrumX Documentation, Release ElectrumX 1.9.5

DONATION_ADDRESS
The server donation address reported to Electrum clients. Defaults to empty, which Electrum interprets as
meaning there is none.

BANNER_FILE
The path to a banner file to serve to clients in Electrum’s “Console” tab. Relative file paths must be relative to
DB_DIRECTORY . The banner file is re-read for each new client.

You can place several meta-variables in your banner file, which will be replaced before serving to a client.

• $SERVER_VERSION is replaced with the ElectrumX version you are running, such as 1.0.10.

• $SERVER_SUBVERSION is replaced with the ElectrumX user agent string. For example, ElectrumX
1.0.10.

• $DAEMON_VERSION is replaced with the daemon’s version as a dot-separated string. For example 0.
12.1.

• $DAEMON_SUBVERSION is replaced with the daemon’s user agent string. For example, /
BitcoinUnlimited:0.12.1(EB16; AD4)/.

• $DONATION_ADDRESS is replaced with the address from the DONATION_ADDRESS environment vari-
able.

See here for a script that updates a banner file periodically with useful statistics about fees, last block time and
height, etc.

TOR_BANNER_FILE
As for BANNER_FILE (which is also the default) but shown to incoming connections believed to be to your
Tor hidden service.

ANON_LOGS
Set to anything non-empty to replace IP addresses in logs with redacted text like xx.xx.xx.xx:xxx. By
default IP addresses will be written to logs.

LOG_SESSIONS
The number of seconds between printing session statistics to the log. The output is identical to the sessions RPC
command except that ANON_LOGS is honoured. Defaults to 3600. Set to zero to suppress this logging.

REORG_LIMIT
The maximum number of blocks to be able to handle in a chain reorganisation. ElectrumX retains some fairly
compact undo information for this many blocks in levelDB. The default is a function of COIN and NET; for
Bitcoin mainnet it is 200.

EVENT_LOOP_POLICY
The name of an event loop policy to replace the default asyncio policy, if any. At present only uvloop is
accepted, in which case you must have installed the uvloop Python package.

If you are not sure what this means leave it unset.

DROP_CLIENT
Set a regular expression to disconnect any client based on their version string. For example to drop versions
from 1.0 to 1.2 use the regex 1\.[0-2]\.\d+.

4.6.4 Resource Usage Limits

The following environment variables are all optional and help to limit server resource consumption and prevent simple
DoS.

Address subscriptions in ElectrumX are very cheap - they consume about 160 bytes of memory each and are processed
efficiently. I feel the two subscription-related defaults below are low and encourage you to raise them.

22 Chapter 4. Documentation

https://github.com/shsmith/electrumx-banner-updater
https://pypi.python.org/pypi/uvloop

ElectrumX Documentation, Release ElectrumX 1.9.5

MAX_SESSIONS
The maximum number of incoming connections. Once reached, TCP and SSL listening sockets are closed until
the session count drops naturally to 95% of the limit. Defaults to 1,000.

MAX_SEND
The maximum size of a response message to send over the wire, in bytes. Defaults to 1,000,000 (except for Aux-
PoW coins, which default to 10,000,000). Values smaller than 350,000 are taken as 350,000 because standard
Electrum protocol header “chunk” requests are almost that large.

The Electrum protocol has a flaw in that address histories must be served all at once or not at all, an obvious
avenue for abuse. MAX_SEND is a stop-gap until the protocol is improved to admit incremental history requests.
Each history entry is approximately 100 bytes so the default is equivalent to a history limit of around 10,000
entries, which should be ample for most legitimate users. If you use a higher default bear in mind one client can
request history for multiple addresses. Also note that the largest raw transaction you will be able to serve to a
client is just under half of MAX_SEND, as each raw byte becomes 2 hexadecimal ASCII characters on the wire.
Very few transactions on Bitcoin mainnet are over 500KB in size.

MAX_SUBS
The maximum number of address subscriptions across all sessions. Defaults to 250,000.

MAX_SESSION_SUBS
The maximum number of address subscriptions permitted to a single session. Defaults to 50,000.

BANDWIDTH_LIMIT
Per-session periodic bandwidth usage limit in bytes. This is a soft, not hard, limit. Currently the period is
hard-coded to be one hour. The default limit value is 2 million bytes.

Bandwidth usage over each period is totalled, and when this limit is exceeded each subsequent request is stalled
by sleeping before handling it, effectively giving higher processing priority to other sessions.

The more bandwidth usage exceeds this soft limit the longer the next request will sleep. Sleep times are a round
number of seconds with a minimum of 1. Each time the delay changes the event is logged.

Bandwidth usage is gradually reduced over time by “refunding” a proportional part of the limit every now and
then.

SESSION_TIMEOUT
An integer number of seconds defaulting to 600. Sessions with no activity for longer than this are disconnected.
Properly functioning Electrum clients by default will send pings roughly every 60 seconds.

4.6.5 Peer Discovery

In response to the server.peers.subscribe() RPC call, ElectrumX will only return peer servers that it has
recently connected to and verified basic functionality.

If you are not running a Tor proxy ElectrumX will be unable to connect to onion server peers, in which case rather
than returning no onion peers it will fall back to a hard-coded list.

To give incoming clients a full range of onion servers you will need to be running a Tor proxy for ElectrumX to use.

ElectrumX will perform peer-discovery by default and announce itself to other peers. If your server is private you may
wish to disable some of this.

PEER_DISCOVERY
This environment variable is case-insensitive and defaults to on.

If on, ElectrumX will occasionally connect to and verify its network of peer servers.

If off, peer discovery is disabled and a hard-coded default list of servers will be read in and served. If set to
self then peer discovery is disabled and the server will only return itself in the peers list.

4.6. Environment Variables 23

ElectrumX Documentation, Release ElectrumX 1.9.5

PEER_ANNOUNCE
Set this environment variable to empty to disable announcing itself. If not defined, or non-empty, ElectrumX
will announce itself to peers.

If peer discovery is disabled this environment variable has no effect, because ElectrumX only announces itself
to peers when doing peer discovery if it notices it is not present in the peer’s returned list.

FORCE_PROXY
By default peer discovery happens over the clear internet. Set this to non-empty to force peer discovery to be
done via the proxy. This might be useful if you are running a Tor service exclusively and wish to keep your IP
address private.

TOR_PROXY_HOST
The host where your Tor proxy is running. Defaults to localhost.

If you are not running a Tor proxy just leave this environment variable undefined.

TOR_PROXY_PORT
The port on which the Tor proxy is running. If not set, ElectrumX will autodetect any proxy running on the
usual ports 9050 (Tor), 9150 (Tor browser bundle) and 1080 (socks).

BLACKLIST_URL
URL to retrieve a list of blacklisted peers. If not set, a coin- specific default is used.

4.6.6 Server Advertising

These environment variables affect how your server is advertised by peer discovery (if enabled).

REPORT_HOST
The clearnet host to advertise. If not set, no clearnet host is advertised.

REPORT_TCP_PORT
The clearnet TCP port to advertise if REPORT_HOST is set. Defaults to TCP_PORT. 0 disables publishing a
TCP port.

REPORT_SSL_PORT
The clearnet SSL port to advertise if REPORT_HOST is set. Defaults to SSL_PORT. 0 disables publishing an
SSL port.

REPORT_HOST_TOR
If you wish run a Tor service, this is the Tor host name to advertise and must end with .onion.

REPORT_TCP_PORT_TOR
The Tor TCP port to advertise. The default is the clearnet REPORT_TCP_PORT, unless disabled or it is 0,
otherwise TCP_PORT. 0 disables publishing a Tor TCP port.

REPORT_SSL_PORT_TOR
The Tor SSL port to advertise. The default is the clearnet REPORT_SSL_PORT, unless disabled or it is 0,
otherwise SSL_PORT. 0 disables publishing a Tor SSL port.

Note: Certificate-Authority signed certificates don’t work over Tor, so you should set
REPORT_SSL_PORT_TOR to 0 if yours is not self-signed.

4.6.7 Cache

If synchronizing from the Genesis block your performance might change by tweaking the cache size. Cache size is
only checked roughly every minute, so the cache can grow beyond the specified size. Moreover, the Python process

24 Chapter 4. Documentation

ElectrumX Documentation, Release ElectrumX 1.9.5

is often quite a bit fatter than the cache size, because of Python overhead and also because leveldb consumes a lot of
memory when flushing. So I recommend you do not set this over 60% of your available physical RAM:

CACHE_MB
The amount of cache, in MB, to use. The default is 1,200.

A portion of the cache is reserved for unflushed history, which is written out frequently. The bulk is used to
cache UTXOs.

Larger caches probably increase performance a little as there is significant searching of the UTXO cache during
indexing. However, I don’t see much benefit in my tests pushing this too high, and in fact performance begins
to fall, probably because LevelDB already caches, and also because of Python GC.

I do not recommend raising this above 2000.

4.7 Electrum Protocol

This is intended to be a reference for client and server authors alike.

4.7.1 Protocol Basics

Message Stream

Clients and servers communicate using JSON RPC over an unspecified underlying stream transport protocol, typically
TCP or SSL.

Two standards JSON RPC 1.0 and JSON RPC 2.0 are specified; use of version 2.0 is encouraged but not required.
Server support of batch requests is encouraged for version 1.0 but not required.

Note: A client or server should only indicate JSON RPC 2.0 by setting the jsonrpc member of its messages to "2.0"
if it supports the version 2.0 protocol in its entirety. ElectrumX does and will expect clients advertizing so to function
correctly. Those that do not will be disconnected and possibly blacklisted.

Clients making batch requests should limit their size depending on the nature of their query, because servers will limit
response size as an anti-DoS mechanism.

Each RPC call, and each response, is separated by a single newline in their respective streams. The JSON specification
does not permit control characters within strings, so no confusion is possible there. However it does permit newlines
as extraneous whitespace between elements; client and server MUST NOT use newlines in such a way.

If using JSON RPC 2.0’s feature of parameter passing by name, the names shown in the description of the method or
notification in question MUST be used.

A server advertising support for a particular protocol version MUST support each method documented for that protocol
version, unless the method is explicitly marked optional. It may support other methods or additional parameters with
unspecified behaviour. Use of additional parameters is discouraged as it may conflict with future versions of the
protocol.

Notifications

Some RPC calls are subscriptions which, after the initial response, will send a JSON RPC notification each time the
thing subscribed to changes. The method of the notification is the same as the method of the subscription, and the
params of the notification (and their names) are given in the documentation of the method.

4.7. Electrum Protocol 25

http://www.jsonrpc.org/specification_v1
http://www.jsonrpc.org/specification
http://www.jsonrpc.org/specification#request_object

ElectrumX Documentation, Release ElectrumX 1.9.5

Version Negotiation

It is desirable to have a way to enhance and improve the protocol without forcing servers and clients to upgrade at the
same time.

Protocol versions are denoted by dotted number strings with at least one dot. Examples: “1.5”, “1.4.1”, “2.0”. In
“a.b.c” a is the major version number, b the minor version number, and c the revision number.

A party to a connection will speak all protocol versions in a range, say from protocol_min to protocol_max, which
may be the same. When a connection is made, both client and server must initially assume the protocol to use is their
own protocol_min.

The client should send a server.version() RPC call as early as possible in order to negotiate the precise protocol
version; see its description for more detail. All responses received in the stream from and including the server’s
response to this call will use its negotiated protocol version.

Script Hashes

A script hash is the hash of the binary bytes of the locking script (ScriptPubKey), expressed as a hexadecimal string.
The hash function to use is given by the “hash_function” member of server.features() (currently sha256()
only). Like for block and transaction hashes, when converting the big-endian binary hash to a hexadecimal string the
least-significant byte appears first, and the most-significant byte last.

For example, the legacy Bitcoin address from the genesis block:

1A1zP1eP5QGefi2DMPTfTL5SLmv7DivfNa

has P2PKH script:

76a91462e907b15cbf27d5425399ebf6f0fb50ebb88f1888ac

with SHA256 hash:

6191c3b590bfcfa0475e877c302da1e323497acf3b42c08d8fa28e364edf018b

which is sent to the server reversed as:

8b01df4e368ea28f8dc0423bcf7a4923e3a12d307c875e47a0cfbf90b5c39161

By subscribing to this hash you can find P2PKH payments to that address.

One public key, the genesis block public key, among the trillions for that address is:

04678afdb0fe5548271967f1a67130b7105cd6a828e03909a67962e0ea1f61deb
649f6bc3f4cef38c4f35504e51ec112de5c384df7ba0b8d578a4c702b6bf11d5f

which has P2PK script:

4104678afdb0fe5548271967f1a67130b7105cd6a828e03909a67962e0ea1f61deb
649f6bc3f4cef38c4f35504e51ec112de5c384df7ba0b8d578a4c702b6bf11d5fac

with SHA256 hash:

3318537dfb3135df9f3d950dbdf8a7ae68dd7c7dfef61ed17963ff80f3850474

which is sent to the server reversed as:

26 Chapter 4. Documentation

ElectrumX Documentation, Release ElectrumX 1.9.5

740485f380ff6379d11ef6fe7d7cdd68aea7f8bd0d953d9fdf3531fb7d531833

By subscribing to this hash you can find P2PK payments to the genesis block public key.

Note: The Genesis block coinbase is uniquely unspendable and therefore not indexed. It will not show with the above
P2PK script hash subscription.

Status

To calculate the status of a script hash (or address):

1. order confirmed transactions to the script hash by increasing height (and position in the block if there are more than
one in a block)

2. form a string that is the concatenation of strings "tx_hash:height:" for each transaction in order, where:

• tx_hash is the transaction hash in hexadecimal

• height is the height of the block it is in.

3. Next, with mempool transactions in any order, append a similar string for those transactions, but where height is
-1 if the transaction has at least one unconfirmed input, and 0 if all inputs are confirmed.

4. The status of the script hash is the sha256() hash of the full string expressed as a hexadecimal string, or null if
the string is empty because there are no transactions.

Block Headers

Originally Electrum clients would download all block headers and verify the chain of hashes and header difficulty in
order to confirm the merkle roots with which to check transaction inclusion.

With the BTC and BCH chains now past height 500,000, the headers form over 40MB of raw data which becomes
80MB if downloaded as text from Electrum servers. The situation is worse for testnet and coins with more frequent
blocks. Downloading and verifying all this data on initial use would take several minutes, during which Electrum was
non-responsive.

To facilitate a better experience for SPV clients, particularly on mobile, protocol version 1.4 introduces an op-
tional cp_height argument to the blockchain.block.header() and blockchain.block.headers()
RPC calls.

This requests the server provide a merkle proof, to a single 32-byte checkpoint hard-coded in the client, that the
header(s) provided are valid in the same way the server proves a transaction is included in a block. If several consecu-
tive headers are requested, the proof is provided for the final header - the prev_hash links in the headers are sufficient
to prove the others valid.

Using this feature client software only needs to download the headers it is interested in up to the checkpoint. Headers
after the checkpoint must all be downloaded and validated as before. The RPC calls return the merkle root, so to
embed a checkpoint in a client simply make an RPC request to a couple of trusted servers for the greatest height to
which a reorganisation of the chain is infeasible, and confirm the returned roots match.

Note: with 500,000 headers of 80 bytes each, a naïve server implementation would require hashing approximately
88MB of data to provide a single merkle proof. ElectrumX implements an optimization such that it hashes only
approximately 180KB of data per proof.

4.7. Electrum Protocol 27

ElectrumX Documentation, Release ElectrumX 1.9.5

4.7.2 Protocol Methods

blockchain.block.header

Return the block header at the given height.

Signature

blockchain.block.header(height, cp_height=0)

New in version 1.3.

Changed in version 1.4: cp_height parameter added

Changed in version 1.4.1.

height

The height of the block, a non-negative integer.

cp_height

Checkpoint height, a non-negative integer. Ignored if zero, otherwise the following must hold:

height <= cp_height

Result

If cp_height is zero, the raw block header as a hexadecimal string.

Otherwise a dictionary with the following keys. This provides a proof that the given header is present in
the blockchain; presumably the client has the merkle root hard-coded as a checkpoint.

• branch

The merkle branch of header up to root, deepest pairing first.

• header

The raw block header as a hexadecimal string. Starting with version 1.4.1, AuxPoW data (if present
in the original header) is truncated.

• root

The merkle root of all blockchain headers up to and including cp_height.

Example Result

With height 5 and cp_height 0 on the Bitcoin Cash chain:

→˓"0100000085144a84488ea88d221c8bd6c059da090e88f8a2c99690ee55dbba4e00000000e11c48fecdd9e72510ca84f023370c9a38bf91ac5cae88019bee94d24528526344c36649ffff001d1d03e477
→˓"

With cp_height 8:

{
"branch": [

"000000004ebadb55ee9096c9a2f8880e09da59c0d68b1c228da88e48844a1485",
"96cbbc84783888e4cc971ae8acf86dd3c1a419370336bb3c634c97695a8c5ac9",
"965ac94082cebbcffe458075651e9cc33ce703ab0115c72d9e8b1a9906b2b636",
"89e5daa6950b895190716dd26054432b564ccdc2868188ba1da76de8e1dc7591"
],

"header":
→˓"0100000085144a84488ea88d221c8bd6c059da090e88f8a2c99690ee55dbba4e00000000e11c48fecdd9e72510ca84f023370c9a38bf91ac5cae88019bee94d24528526344c36649ffff001d1d03e477
→˓", (continues on next page)

28 Chapter 4. Documentation

ElectrumX Documentation, Release ElectrumX 1.9.5

(continued from previous page)

"root": "e347b1c43fd9b5415bf0d92708db8284b78daf4d0e24f9c3405f45feb85e25db"
}

blockchain.block.headers

Return a concatenated chunk of block headers from the main chain.

Signature

blockchain.block.headers(start_height, count, cp_height=0)

New in version 1.2.

Changed in version 1.4: cp_height parameter added

Changed in version 1.4.1.

start_height

The height of the first header requested, a non-negative integer.

count

The number of headers requested, a non-negative integer.

cp_height

Checkpoint height, a non-negative integer. Ignored if zero, otherwise the following must hold:

start_height + (count - 1) <= cp_height

Result

A dictionary with the following members:

• count

The number of headers returned, between zero and the number requested. If the chain has not
extended sufficiently far, only the available headers will be returned. If more headers than max were
requested at most max will be returned.

• hex

The binary block headers concatenated together in-order as a hexadecimal string. Starting with
version 1.4.1, AuxPoW data (if present in the original header) is truncated if cp_height is nonzero.

• max

The maximum number of headers the server will return in a single request.

The dictionary additionally has the following keys if count and cp_height are not zero. This provides a
proof that all the given headers are present in the blockchain; presumably the client has the merkle root
hard-coded as a checkpoint.

• root

The merkle root of all blockchain headers up to and including cp_height.

• branch

The merkle branch of the last returned header up to root, deepest pairing first.

Example Response

See here for an example of root and branch keys.

4.7. Electrum Protocol 29

ElectrumX Documentation, Release ElectrumX 1.9.5

{
"count": 2,
"hex":

→˓"01003ba3edfd7a7b12b27ac72c3e67768f617fc81bc3888a51323a9fb8aa4b1e5e4a29ab5f49ffff001d1dac2b7c010000006fe28c0ab6f1b372c1a6a246ae63f74f931e8365e15a089c68d6190000000000982051fd1e4ba744bbbe680e1fee14677ba1a3c3540bf7b1cdb606e857233e0e61bc6649ffff001d01e36299
→˓"
"max": 2016

}

blockchain.estimatefee

Return the estimated transaction fee per kilobyte for a transaction to be confirmed within a certain number of blocks.

Signature

blockchain.estimatefee(number)

number

The number of blocks to target for confirmation.

Result

The estimated transaction fee in coin units per kilobyte, as a floating point number. If the daemon does
not have enough information to make an estimate, the integer -1 is returned.

Example Result

0.00101079

blockchain.headers.subscribe

Subscribe to receive block headers when a new block is found.

Signature

blockchain.headers.subscribe()

Result

The header of the current block chain tip. The result is a dictionary with two members:

• hex

The binary header as a hexadecimal string.

• height

The height of the header, an integer.

Example Result

{
"height": 520481,
"hex":

→˓"00000020890208a0ae3a3892aa047c5468725846577cfcd9b512b50000000000000000005dc2b02f2d297a9064ee103036c14d678f9afc7e3d9409cf53fd58b82e938e8ecbeca05a2d2103188ce804c4
→˓"
}

Notifications

30 Chapter 4. Documentation

ElectrumX Documentation, Release ElectrumX 1.9.5

As this is a subcription, the client will receive a notification when a new block is found. The notification’s
signature is:

blockchain.headers.subscribe(header)

• header

See Result above.

Note: should a new block arrive quickly, perhaps while the server is still processing prior blocks, the server may only
notify of the most recent chain tip. The protocol does not guarantee notification of all intermediate block headers.

In a similar way the client must be prepared to handle chain reorganisations. Should a re-org happen the new chain tip
will not sit directly on top of the prior chain tip. The client must be able to figure out the common ancestor block and
request any missing block headers to acquire a consistent view of the chain state.

blockchain.relayfee

Return the minimum fee a low-priority transaction must pay in order to be accepted to the daemon’s memory pool.

Signature

blockchain.relayfee()

Result

The fee in whole coin units (BTC, not satoshis for Bitcoin) as a floating point number.

Example Results

1e-05

0.0

blockchain.scripthash.get_balance

Return the confirmed and unconfirmed balances of a script hash.

Signature

blockchain.scripthash.get_balance(scripthash)

New in version 1.1.

scripthash

The script hash as a hexadecimal string.

Result

A dictionary with keys confirmed and unconfirmed. The value of each is the appropriate balance in coin
units as a string.

Result Example

{
"confirmed": "1.03873966",
"unconfirmed": "0.236844"

}

4.7. Electrum Protocol 31

ElectrumX Documentation, Release ElectrumX 1.9.5

blockchain.scripthash.get_history

Return the confirmed and unconfirmed history of a script hash.

Signature

blockchain.scripthash.get_history(scripthash)

New in version 1.1.

scripthash

The script hash as a hexadecimal string.

Result

A list of confirmed transactions in blockchain order, with the output of blockchain.scripthash.
get_mempool() appended to the list. Each confirmed transaction is a dictionary with the following
keys:

• height

The integer height of the block the transaction was confirmed in.

• tx_hash

The transaction hash in hexadecimal.

See blockchain.scripthash.get_mempool() for how mempool transactions are returned.

Result Examples

[
{
"height": 200004,
"tx_hash": "acc3758bd2a26f869fcc67d48ff30b96464d476bca82c1cd6656e7d506816412"

},
{
"height": 215008,
"tx_hash": "f3e1bf48975b8d6060a9de8884296abb80be618dc00ae3cb2f6cee3085e09403"

}
]

[
{
"fee": 20000,
"height": 0,
"tx_hash": "9fbed79a1e970343fcd39f4a2d830a6bde6de0754ed2da70f489d0303ed558ec"

}
]

blockchain.scripthash.get_mempool

Return the unconfirmed transactions of a script hash.

Signature

blockchain.scripthash.get_mempool(scripthash)

New in version 1.1.

scripthash

32 Chapter 4. Documentation

ElectrumX Documentation, Release ElectrumX 1.9.5

The script hash as a hexadecimal string.

Result

A list of mempool transactions in arbitrary order. Each mempool transaction is a dictionary with the
following keys:

• height

0 if all inputs are confirmed, and -1 otherwise.

• tx_hash

The transaction hash in hexadecimal.

• fee

The transaction fee in minimum coin units (satoshis).

Result Example

[
{
"tx_hash": "45381031132c57b2ff1cbe8d8d3920cf9ed25efd9a0beb764bdb2f24c7d1c7e3",
"height": 0,
"fee": 24310

}
]

blockchain.scripthash.history

Return part of the confirmed history of a script hash.

Signature

blockchain.scripthash.history(scripthash, start_height)

New in version 1.5.

scripthash

The script hash as a hexadecimal string.

start_height

History will be returned starting from this height, a non-negative integer. If there are several
matching transactions in a block, the server will return all of them – partial results from a block
are not permitted. The client can start subsequent requests at one above the greatest returned
height and avoid repeats.

Result

A dictionary with the following keys.

• more

true indicates that there may be more history available. A follow-up request is required to obtain
any. false means all history to blockchain’s tip has been returned.

• history

A list ot transactions. Each transaction is itself a list of two elements:

1. The block height

4.7. Electrum Protocol 33

ElectrumX Documentation, Release ElectrumX 1.9.5

2. The transaction hash

Result Examples

{
"more": false,
"history": [
[

200004,
"acc3758bd2a26f869fcc67d48ff30b96464d476bca82c1cd6656e7d506816412"

],
[

215008,
"f3e1bf48975b8d6060a9de8884296abb80be618dc00ae3cb2f6cee3085e09403"

]
]

}

blockchain.scripthash.listunspent

Return an ordered list of UTXOs sent to a script hash.

Signature

blockchain.scripthash.listunspent(scripthash)

New in version 1.1.

scripthash

The script hash as a hexadecimal string.

Result

A list of unspent outputs in blockchain order. This function takes the mempool into account. Mempool
transactions paying to the address are included at the end of the list in an undefined order. Any output that
is spent in the mempool does not appear. Each output is a dictionary with the following keys:

• height

The integer height of the block the transaction was confirmed in. 0 if the transaction is in the
mempool.

• tx_pos

The zero-based index of the output in the transaction’s list of outputs.

• tx_hash

The output’s transaction hash as a hexadecimal string.

• value

The output’s value in minimum coin units (satoshis).

Result Example

[
{
"tx_pos": 0,
"value": 45318048,
"tx_hash": "9f2c45a12db0144909b5db269415f7319179105982ac70ed80d76ea79d923ebf",

(continues on next page)

34 Chapter 4. Documentation

ElectrumX Documentation, Release ElectrumX 1.9.5

(continued from previous page)

"height": 437146
},
{
"tx_pos": 0,
"value": 919195,
"tx_hash": "3d2290c93436a3e964cfc2f0950174d8847b1fbe3946432c4784e168da0f019f",
"height": 441696

}
]

blockchain.scripthash.subscribe

Subscribe to a script hash.

Signature

blockchain.scripthash.subscribe(scripthash)

New in version 1.1.

scripthash

The script hash as a hexadecimal string.

Result

Changed in version 1.5.

As of protocol 1.5, the transaction hash of the last confirmed transaction in blockchain order, or null if
there are none.

For protocol versions 1.4 and below, the status of the script hash.

Notifications

Changed in version 1.5.

As this is a subscription, the client receives notifications when the confirmed transaction history and/or
associated mempool transactions change.

As of protocol 1.5, the initial mempool and subsequent changes to it are sent with mempool.
changes() notifications. When confirmed history changes, a notification with signature

blockchain.scripthash.subscribe(scripthash, tx_hash)

is sent, where tx_hash is the hash of the last confirmed transaction in blockchain order.

For protocol versions 1.4 and below, the client will receive a notification when the status of the script hash
changes. Its signature is

blockchain.scripthash.subscribe(scripthash, status)

blockchain.scripthash.utxos

Return some confirmed UTXOs sent to a script hash.

Signature

blockchain.scripthash.utxos(scripthash, start_height)

New in version 1.5.

4.7. Electrum Protocol 35

ElectrumX Documentation, Release ElectrumX 1.9.5

scripthash

The script hash as a hexadecimal string.

start_height

UTXOs will be returned starting from this height, a non-negative integer. If there are several
UTXOs in one block, the server will return all of them – partial results from a block are not
permitted. The client can start subsequent requests at one above the greatest returned height
and avoid repeats.

Note: To get the effects of transactions in the mempool adding or removing UTXOs, a client must blockchain.
scripthash.subscribe() and track mempool transactions sent via mempool.changes() notifications.

Result

A dictionary with the following keys.

• more

true indicates that there may be more UTXOs available. A follow-up request is required to obtain
any. false means all UTXOs to the blockchain’s tip have been returned.

• utxos

A list of UTXOs. Each UTXO is itself a list with the following elements:

1. The height of the block the transaction is in

2. The transaction hash as a hexadecimal string

3. The zero-based index of the output in the transaction’s outputs

4. The output value, an integer in minimum coin units (satoshis)

Result Example

:: TODO

blockchain.transaction.broadcast

Broadcast a transaction to the network.

Signature

blockchain.transaction.broadcast(raw_tx)

Changed in version 1.1: errors returned as JSON RPC errors rather than as a result.

raw_tx

The raw transaction as a hexadecimal string.

Result

The transaction hash as a hexadecimal string.

Note protocol version 1.0 (only) does not respond according to the JSON RPC specification if an error
occurs. If the daemon rejects the transaction, the result is the error message string from the daemon, as if
the call were successful. The client needs to determine if an error occurred by comparing the result to the
expected transaction hash.

Result Examples

36 Chapter 4. Documentation

ElectrumX Documentation, Release ElectrumX 1.9.5

"a76242fce5753b4212f903ff33ac6fe66f2780f34bdb4b33b175a7815a11a98e"

Protocol version 1.0 returning an error as the result:

"258: txn-mempool-conflict"

blockchain.transaction.get

Return a raw transaction.

Signature

blockchain.transaction.get(tx_hash, verbose=false, merkle=false)

Changed in version 1.1: ignored argument height removed

Changed in version 1.2: verbose argument added

Changed in version 1.5: merkle argument added

tx_hash

The transaction hash as a hexadecimal string.

verbose

Whether a verbose coin-specific response is required.

merkle

Whether a merkle branch proof should be returned as well.

Result

If verbose is false:

If merkle is false, the raw transaction as a hexadecimal string. If true, the dictionary
returned by blockchain.transaction.get_merkle() with an additional key:

hex

The raw transaction as a hexadecimal string.

If verbose is true:

The result is a coin-specific dictionary – whatever the coin daemon returns when asked for a
verbose form of the raw transaction. If merkle is true it will have an additional key:

merkle

The dictionary returned by blockchain.transaction.get_merkle().

Example Results

When verbose is false and merkle is false:

"01000000015bb9142c960a838329694d3fe9ba08c2a6421c5158d8f7044cb7c48006c1b48"
"4000000006a4730440220229ea5359a63c2b83a713fcc20d8c41b20d48fe639a639d2a824"
"6a137f29d0fc02201de12de9c056912a4e581a62d12fb5f43ee6c08ed0238c32a1ee76921"
"3ca8b8b412103bcf9a004f1f7a9a8d8acce7b51c983233d107329ff7c4fb53e44c855dbe1"
"f6a4feffffff02c6b68200000000001976a9141041fb024bd7a1338ef1959026bbba86006"
"4fe5f88ac50a8cf00000000001976a91445dac110239a7a3814535c15858b939211f85298"
"88ac61ee0700"

4.7. Electrum Protocol 37

ElectrumX Documentation, Release ElectrumX 1.9.5

When verbose is true and merkle is false:

{
"blockhash": "0000000000000000015a4f37ece911e5e3549f988e855548ce7494a0a08b2ad6",
"blocktime": 1520074861,
"confirmations": 679,
"hash": "36a3692a41a8ac60b73f7f41ee23f5c917413e5b2fad9e44b34865bd0d601a3d",
"hex":

→˓"01000000015bb9142c960a838329694d3fe9ba08c2a6421c5158d8f7044cb7c48006c1b484000000006a4730440220229ea5359a63c2b83a713fcc20d8c41b20d48fe639a639d2a8246a137f29d0fc02201de12de9c056912a4e581a62d12fb5f43ee6c08ed0238c32a1ee769213ca8b8b412103bcf9a004f1f7a9a8d8acce7b51c983233d107329ff7c4fb53e44c855dbe1f6a4feffffff02c6b68200000000001976a9141041fb024bd7a1338ef1959026bbba860064fe5f88ac50a8cf00000000001976a91445dac110239a7a3814535c15858b939211f8529888ac61ee0700
→˓",
"locktime": 519777,
"size": 225,
"time": 1520074861,
"txid": "36a3692a41a8ac60b73f7f41ee23f5c917413e5b2fad9e44b34865bd0d601a3d",
"version": 1,
"vin": [{
"scriptSig": {

"asm":
→˓"30440220229ea5359a63c2b83a713fcc20d8c41b20d48fe639a639d2a8246a137f29d0fc02201de12de9c056912a4e581a62d12fb5f43ee6c08ed0238c32a1ee769213ca8b8b[ALL|FORKID]
→˓03bcf9a004f1f7a9a8d8acce7b51c983233d107329ff7c4fb53e44c855dbe1f6a4",

"hex":
→˓"4730440220229ea5359a63c2b83a713fcc20d8c41b20d48fe639a639d2a8246a137f29d0fc02201de12de9c056912a4e581a62d12fb5f43ee6c08ed0238c32a1ee769213ca8b8b412103bcf9a004f1f7a9a8d8acce7b51c983233d107329ff7c4fb53e44c855dbe1f6a4
→˓"

},
"sequence": 4294967294,
"txid": "84b4c10680c4b74c04f7d858511c42a6c208bae93f4d692983830a962c14b95b",
"vout": 0}],

"vout": [{ "n": 0,
"scriptPubKey": { "addresses": ["12UxrUZ6tyTLoR1rT1N4nuCgS9DDURTJgP"],

"asm": "OP_DUP OP_HASH160
→˓1041fb024bd7a1338ef1959026bbba860064fe5f OP_EQUALVERIFY OP_CHECKSIG",

"hex":
→˓"76a9141041fb024bd7a1338ef1959026bbba860064fe5f88ac",

"reqSigs": 1,
"type": "pubkeyhash"},

"value": 0.0856647},
{ "n": 1,
"scriptPubKey": { "addresses": ["17NMgYPrguizvpJmB1Sz62ZHeeFydBYbZJ"],

"asm": "OP_DUP OP_HASH160
→˓45dac110239a7a3814535c15858b939211f85298 OP_EQUALVERIFY OP_CHECKSIG",

"hex":
→˓"76a91445dac110239a7a3814535c15858b939211f8529888ac",

"reqSigs": 1,
"type": "pubkeyhash"},

"value": 0.1360904}]}

blockchain.transaction.get_merkle

Return the merkle branch to a confirmed transaction given its hash and height.

Signature

blockchain.transaction.get_merkle(tx_hash, height)

tx_hash

The transaction hash as a hexadecimal string.

height

38 Chapter 4. Documentation

ElectrumX Documentation, Release ElectrumX 1.9.5

The height at which it was confirmed, an integer.

Result

A dictionary with the following keys:

• block_height

The height of the block the transaction was confirmed in.

• merkle

A list of transaction hashes the current hash is paired with, recursively, in order to trace up to obtain
merkle root of the block, deepest pairing first.

• pos

The 0-based index of the position of the transaction in the ordered list of transactions in the block.

Result Example

{
"merkle":
[
"713d6c7e6ce7bbea708d61162231eaa8ecb31c4c5dd84f81c20409a90069cb24",
"03dbaec78d4a52fbaf3c7aa5d3fccd9d8654f323940716ddf5ee2e4bda458fde",
"e670224b23f156c27993ac3071940c0ff865b812e21e0a162fe7a005d6e57851",
"369a1619a67c3108a8850118602e3669455c70cdcdb89248b64cc6325575b885",
"4756688678644dcb27d62931f04013254a62aeee5dec139d1aac9f7b1f318112",
"7b97e73abc043836fd890555bfce54757d387943a6860e5450525e8e9ab46be5",
"61505055e8b639b7c64fd58bce6fc5c2378b92e025a02583303f69930091b1c3",
"27a654ff1895385ac14a574a0415d3bbba9ec23a8774f22ec20d53dd0b5386ff",
"5312ed87933075e60a9511857d23d460a085f3b6e9e5e565ad2443d223cfccdc",
"94f60b14a9f106440a197054936e6fb92abbd69d6059b38fdf79b33fc864fca0",
"2d64851151550e8c4d337f335ee28874401d55b358a66f1bafab2c3e9f48773d"

],
"block_height": 450538,
"pos": 710

}

blockchain.transaction.id_from_pos

Return a transaction hash and optionally a merkle proof, given a block height and a position in the block.

Signature

blockchain.transaction.id_from_pos(height, tx_pos, merkle=false)

New in version 1.4.

height

The main chain block height, a non-negative integer.

tx_pos

A zero-based index of the transaction in the given block, an integer.

merkle

Whether a merkle proof should also be returned, a boolean.

Result

4.7. Electrum Protocol 39

ElectrumX Documentation, Release ElectrumX 1.9.5

If merkle is false, the transaction hash as a hexadecimal string. If true, a dictionary with the following
keys:

• tx_hash

The transaction hash as a hexadecimal string.

• merkle

A list of transaction hashes the current hash is paired with, recursively, in order to trace up to obtain
merkle root of the block, deepest pairing first.

Example Results

When merkle is false:

"fc12dfcb4723715a456c6984e298e00c479706067da81be969e8085544b0ba08"

When merkle is true:

{
"tx_hash": "fc12dfcb4723715a456c6984e298e00c479706067da81be969e8085544b0ba08",
"merkle":
[
"928c4275dfd6270349e76aa5a49b355eefeb9e31ffbe95dd75fed81d219a23f8",
"5f35bfb3d5ef2ba19e105dcd976928e675945b9b82d98a93d71cbad0e714d04e",
"f136bcffeeed8844d54f90fc3ce79ce827cd8f019cf1d18470f72e4680f99207",
"6539b8ab33cedf98c31d4e5addfe40995ff96c4ea5257620dfbf86b34ce005ab",
"7ecc598708186b0b5bd10404f5aeb8a1a35fd91d1febbb2aac2d018954885b1e",
"a263aae6c470b9cde03b90675998ff6116f3132163911fafbeeb7843095d3b41",
"c203983baffe527edb4da836bc46e3607b9a36fa2c6cb60c1027f0964d971b29",
"306d89790df94c4632d652d142207f53746729a7809caa1c294b895a76ce34a9",
"c0b4eff21eea5e7974fe93c62b5aab51ed8f8d3adad4583c7a84a98f9e428f04",
"f0bd9d2d4c4cf00a1dd7ab3b48bbbb4218477313591284dcc2d7ca0aaa444e8d",
"503d3349648b985c1b571f59059e4da55a57b0163b08cc50379d73be80c4c8f3"

]
}

mempool.changes

A notification that indicates changes to unconfirmed transactions of a subscribed script hash. As its name suggests the
notification is stateful; its contents are a function of what was sent previously.

Signature

mempool.changes(scripthash, new, gone)

New in version 1.5.

The parameters are as follows:

• scripthash

The script hash the notification is for, a hexadecimal string.

• new

A list of transactions in the mempool that have not previously been sent to the client, or whose
confirmed input status has changed. Each transaction is an ordered list of 3 items:

40 Chapter 4. Documentation

ElectrumX Documentation, Release ElectrumX 1.9.5

1. The raw transaction or its hash as a hexadecimal string. The first time the server sends a trans-
action it sends it raw. Subsequent references in the same new list or in later notifications will
send the hash only. Transactions cannot be 32 bytes in size so length can be used to distinguish.

2. The transaction fee, an integer in minimum coin units (satoshis)

3. true if all inputs are confirmed otherwise false

• gone

A list of hashes of transactions that were previously sent to the client as being in the mempool but
no longer are. Those transactions presumably were confirmed in a block or were evicted from the
mempool.

Notification Example

:: TODO

mempool.get_fee_histogram

Return a histogram of the fee rates paid by transactions in the memory pool, weighted by transaction size.

Signature

mempool.get_fee_histogram()

New in version 1.2.

Result

The histogram is an array of [fee, vsize] pairs, where vsizen is the cumulative virtual size of mempool
transactions with a fee rate in the interval [feen-1, feen], and feen-1 > feen.

Fee intervals may have variable size. The choice of appropriate intervals is currently not part of the
protocol.

Example Result

[[12, 128812], [4, 92524], [2, 6478638], [1, 22890421]]

server.add_peer

A newly-started server uses this call to get itself into other servers’ peers lists. It sould not be used by wallet clients.

Signature

server.add_peer(features)

New in version 1.1.

• features

The same information that a call to the sender’s server.features() RPC call would return.

Result

A boolean indicating whether the request was tentatively accepted. The requesting server will appear in
server.peers.subscribe() when further sanity checks complete successfully.

4.7. Electrum Protocol 41

ElectrumX Documentation, Release ElectrumX 1.9.5

server.banner

Return a banner to be shown in the Electrum console.

Signature

server.banner()

Result

A string.

Example Result

"Welcome to Electrum!"

server.donation_address

Return a server donation address.

Signature

server.donation_address()

Result

A string.

Example Result

"1BWwXJH3q6PRsizBkSGm2Uw4Sz1urZ5sCj"

server.features

Return a list of features and services supported by the server.

Signature

server.features()

Result

A dictionary of keys and values. Each key represents a feature or service of the server, and the value gives
additional information.

The following features MUST be reported by the server. Additional key-value pairs may be returned.

• hosts

A dictionary, keyed by host name, that this server can be reached at. Normally this will only have a
single entry; other entries can be used in case there are other connection routes (e.g. Tor).

The value for a host is itself a dictionary, with the following optional keys:

– ssl_port

An integer. Omit or set to null if SSL connectivity is not provided.

– tcp_port

An integer. Omit or set to null if TCP connectivity is not provided.

A server should ignore information provided about any host other than the one it connected to.

42 Chapter 4. Documentation

ElectrumX Documentation, Release ElectrumX 1.9.5

• genesis_hash

The hash of the genesis block. This is used to detect if a peer is connected to one serving a different
network.

• hash_function

The hash function the server uses for script hashing. The client must use this function to hash
pay-to-scripts to produce script hashes to send to the server. The default is “sha256”. “sha256” is
currently the only acceptable value.

• server_version

A string that identifies the server software. Should be the same as the result to the server.
version() RPC call.

• protocol_max

• protocol_min

Strings that are the minimum and maximum Electrum protocol versions this server speaks. Example:
“1.1”.

• pruning

An integer, the pruning limit. Omit or set to null if there is no pruning limit. Should be the same
as what would suffix the letter p in the IRC real name.

Example Result

{
"genesis_hash": "000000000933ea01ad0ee984209779baaec3ced90fa3f408719526f8d77f4943

→˓",
"hosts": {"14.3.140.101": {"tcp_port": 51001, "ssl_port": 51002}},
"protocol_max": "1.0",
"protocol_min": "1.0",
"pruning": null,
"server_version": "ElectrumX 1.0.17",
"hash_function": "sha256"

}

server.peers.subscribe

Return a list of peer servers. Despite the name this is not a subscription and the server must send no notifications.

Signature

server.peers.subscribe()

Result

An array of peer servers, each returned as a 3-element array. For example:

["107.150.45.210",
"e.anonyhost.org",
["v1.0", "p10000", "t", "s995"]]

The first element is the IP address, the second is the host name (which might also be an IP address), and
the third is a list of server features. Each feature and starts with a letter. ‘v’ indicates the server maximum
protocol version, ‘p’ its pruning limit and is omitted if it does not prune, ‘t’ is the TCP port number, and
‘s’ is the SSL port number. If a port is not given for ‘s’ or ‘t’ the default port for the coin network is
implied. If ‘s’ or ‘t’ is missing then the server does not support that transport.

4.7. Electrum Protocol 43

ElectrumX Documentation, Release ElectrumX 1.9.5

server.ping

Ping the server to ensure it is responding, and to keep the session alive. The server may disconnect clients that have
sent no requests for roughly 10 minutes.

Signature

server.ping()

New in version 1.2.

Result

Returns null.

server.version

Identify the client to the server and negotiate the protocol version. Only the first server.version() message is
accepted.

Signature

server.version(client_name="", protocol_version="1.4")

• client_name

A string identifying the connecting client software.

• protocol_version

An array [protocol_min, protocol_max], each of which is a string. If protocol_min
and protocol_max are the same, they can be passed as a single string rather than as an array of
two strings, as for the default value.

The server should use the highest protocol version both support:

version = min(client.protocol_max, server.protocol_max)

If this is below the value:

max(client.protocol_min, server.protocol_min)

then there is no protocol version in common and the server must close the connection. Otherwise it should
send a response appropriate for that protocol version.

Result

An array of 2 strings:

[server_software_version, protocol_version]

identifying the server and the protocol version that will be used for future communication.

Example:

server.version("Electrum 3.0.6", ["1.1", "1.2"])

Example Result:

["ElectrumX 1.2.1", "1.2"]

44 Chapter 4. Documentation

ElectrumX Documentation, Release ElectrumX 1.9.5

Masternode methods (Dash and compatible coins)

masternode.announce.broadcast

Pass through the masternode announce message to be broadcast by the daemon.

Whenever a masternode comes online or a client is syncing, they will send this message which describes the mastern-
ode entry and how to validate messages from it.

Signature

masternode.announce.broadcast(signmnb)

• signmnb

Signed masternode broadcast message in hexadecimal format.

Result

true if the message was broadcasted succesfully otherwise false.

Example:

masternode.announce.broadcast(
→˓"012b825a65a24e2eb8edadbe27c4716dab993bf1046a66da77268ec87dbdd9dfc80100000000ffffffff00000000000000000000ffff22db1fec42d82103bfc9e296bcf4d63eced97b204df8f7b2b90131d452abd2b50909fa2ce6f66d752103bfc9e296bcf4d63eced97b204df8f7b2b90131d452abd2b50909fa2ce6f66d754120e95f74e9c242776df88a586bd52d2bd1838b600e5f3ce9d45d04865ff39a994632d617e810a4480ce24c882980746bc517a92be027d2ea70e4baece33a763608b1f91e5b00000000451201002b825a65a24e2eb8edadbe27c4716dab993bf1046a66da77268ec87dbdd9dfc80100000000ffffffff57280bc007121a0db854998f72e9a9fd2a690f38abffbd9aa94256330c020000b0f91e5b00000000412027c03b1531ee14db6160a62a0cc8b1a7e93ae122bbc6f2dffec721e0ae308b0e19e68523dd429450612bda3a616b56411b4e35d098e25b7c83f19fd2d8537e970000000000000000
→˓")

Example Result:

true

masternode.subscribe

Returns the status of masternode.

Signature

masternode.subscribe(collateral)

• collateral

The txId and the index of the collateral.

A masternode collateral is a transaction with a specific amount of coins, it’s also known as a mas-
ternode identifier.

i.e. for DASH the required amount is 1,000 DASH or for $PAC is 500,000 $PAC.

Result

As this is a subcription, the client will receive a notification when the masternode status changes.

The status depends on the server the masternode is hosted, the internet connection, the offline time and
even the collateral amount, so this subscription notice these changes to the user.

Example:

masternode.subscribe(
→˓"8c59133e714797650cf69043d05e409bbf45670eed7c4e4a386e52c46f1b5e24-0")

Example Result:

4.7. Electrum Protocol 45

ElectrumX Documentation, Release ElectrumX 1.9.5

{'method': 'masternode.subscribe', u'jsonrpc': u'2.0', u'result': u'ENABLED', 'params
→˓': ['8c59133e714797650cf69043d05e409bbf45670eed7c4e4a386e52c46f1b5e24-0'], u'id':
→˓19}

masternode.list

Returns the list of masternodes.

Signature

masternode.list(payees)

• payees

An array of masternode payee addresses.

Result

An array with the masternodes information.

Example:

masternode.list("['PDFHmjKLvSGdnWgDJSJX49Rrh0SJtRANcE',
'PDFHmjKLvSGdnWgDJSJX49Rrh0SJtRANcF']")

Example Result:

[
{
"vin": "9d298c00dae8b491d6801f50cab2e0037852cb556c5619ddb07c50421x9a31ab",
"status": "ENABLED",
"protocol": 70213,
"payee": "PDFHmjKLvSGdnWgDJSJX49Rrh0SJtRANcE",
"lastseen": "2018-04-01 12:34",
"activeseconds": 1258000,
"lastpaidtime": "2018-03-10 12:29",
"lastpaidblock": 1234,
"ip": "1.0.0.1",
"paymentposition": 184,
"inselection": true,
"balance": 510350

},
{
"vin": "9d298c00dae8b491d6801f50cab2e0037852cb556c5619ddb07c50421x9a31ac",
"status": "ENABLED",
"protocol": 70213,
"payee": "PDFHmjKLvSGdnWgDJSJX49Rrh0SJtRANcF",
"lastseen": "2018-04-01 12:34",
"activeseconds": 1258000,
"lastpaidtime": "2018-03-15 05:29",
"lastpaidblock": 1234,
"ip": "1.0.0.2",
"paymentposition": 3333,
"inselection": false,
"balance": 520700

},
...,
...,

(continues on next page)

46 Chapter 4. Documentation

ElectrumX Documentation, Release ElectrumX 1.9.5

(continued from previous page)

...,

...
]

ProTx methods (Dash DIP3)

protx.diff

Returns a diff between two deterministic masternode lists. The result also contains proof data.

Signature

protx.diff(base_height, height)

base_height

The starting block height

1 <= base_height

height

The ending block height.

base_height <= height

Result

A dictionary with deterministic masternode lists diff plus proof data

Example:

protx.diff(1, 20000)

Example Result:

{
"baseBlockHash": "000000000b866e7fefc7df2b4b37f236175cee9ab6dc925a30c62401d92b7406",
"blockHash": "0000000005b3f97e0af8c72f9a96eca720237e374ca860938ba0d7a68471c4d6",
"cbTxMerkleTree":

→˓"0200000002c9802d02435cfe09e4253bc1ba4875e9a2f920d5d6adf005d5b9306e5322e6f476d885273422c2fe18e8c420d09484f89eaeee7bb7f4e1ff54bddeb94e099a910103
→˓",
"cbTx":

→˓"030005000100ffffffff4b02204e047867335c08fabe6d6d8b2b76b7000000000470393f63424273736170747365743a7265737574736574010000000000000010000015770000000d2f6e6f64655374726174756d2f000000000336c8a119010000001976a914cb594917ad4e5849688ec63f29a0f7f3badb5da688ac6c62c216010000001976a914a3c5284d3cd896815ac815f2dd76a3a71cb3d8e688acba65df02000000001976a9146d649e1c05e89d30809ef39cc8ee1002c0c8c84b88ac00000000260100204e0000b301c3d88e4072305bec5d09e2ed6b836b23af640bcdefd7b8ae7e2ca182dc17
→˓",
"deletedMNs": [
],
"mnList": [
{

"proRegTxHash":
→˓"6f0bdd7034ce8d3a6976a15e4b4442c274b5c1739fb63fc0a50f01425580e17e",

"confirmedHash":
→˓"000000000be653cd1fbc213239cfec83ca68da657f24cc05305d0be75d34e392",

"service": "173.61.30.231:19023",
"pubKeyOperator":

→˓"8da7ee1a40750868badef2c17d5385480cae7543f8d4d6e5f3c85b37fdd00a6b4f47726b96e7e7c7a3ea68b5d5cb2196
→˓",

"keyIDVoting": "b35c75cbc69433175d3459843e1f6ebe145bf6a3",
"isValid": true

(continues on next page)

4.7. Electrum Protocol 47

ElectrumX Documentation, Release ElectrumX 1.9.5

(continued from previous page)

}
],
"merkleRootMNList":

→˓"17dc82a12c7eaeb8d7efcd0b64af236b836bede2095dec5b3072408ed8c301b3"
}

protx.info

Returns detailed information about a deterministic masternode.

Signature

protx.info(protx_hash)

protx_hash

The hash of the initial ProRegTx.

Result

A dictionary with detailed deterministic masternode data

Example:

protx.info("6f0bdd7034ce8d3a6976a15e4b4442c274b5c1739fb63fc0a50f01425580e17e")

Example Result:

{
"proTxHash": "6f0bdd7034ce8d3a6976a15e4b4442c274b5c1739fb63fc0a50f01425580e17e",
"collateralHash": "b41439376b6117aebe6ad1ce31dcd217d4934fd00c104029ecb7d21c11d17c94

→˓",
"collateralIndex": 3,
"operatorReward": 0,
"state": {
"registeredHeight": 19525,
"lastPaidHeight": 20436,
"PoSePenalty": 0,
"PoSeRevivedHeight": -1,
"PoSeBanHeight": -1,
"revocationReason": 0,
"keyIDOwner": "b35c75cbc69433175d3459843e1f6ebe145bf6a3",
"pubKeyOperator":

→˓"8da7ee1a40750868badef2c17d5385480cae7543f8d4d6e5f3c85b37fdd00a6b4f47726b96e7e7c7a3ea68b5d5cb2196
→˓",

"keyIDVoting": "b35c75cbc69433175d3459843e1f6ebe145bf6a3",
"ownerKeyAddr": "ybGQ7a6e7dkJY2jxdbDwdBtyjKZJ8VB7YC",
"votingKeyAddr": "ybGQ7a6e7dkJY2jxdbDwdBtyjKZJ8VB7YC",
"addr": "173.61.30.231:19023",
"payoutAddress": "yWdXnYxGbouNoo8yMvcbZmZ3Gdp6BpySxL"

},
"confirmations": 984

}

4.7.3 Protocol Changes

This documents lists changes made by protocol version.

48 Chapter 4. Documentation

ElectrumX Documentation, Release ElectrumX 1.9.5

Version 1.0

Deprecated methods

• blockchain.utxo.get_address()

• blockchain.numblocks.subscribe()

Version 1.1

Changes

• improved semantics of server.version() to aid protocol negotiation, and a changed return value.

• blockchain.transaction.get() no longer takes the height argument that was ignored anyway.

• blockchain.transaction.broadcast() returns errors like any other JSON RPC call. A transaction
hash result is only returned on success.

New methods

• blockchain.scripthash.get_balance()

• blockchain.scripthash.get_history()

• blockchain.scripthash.get_mempool()

• blockchain.scripthash.listunspent()

• blockchain.scripthash.subscribe()

• server.features()

• server.add_peer()

Removed methods

• blockchain.utxo.get_address()

• blockchain.numblocks.subscribe()

Version 1.2

Changes

• blockchain.transaction.get() now has an optional parameter verbose.

• blockchain.headers.subscribe() now has an optional parameter raw.

• server.version() should not be used for “ping” functionality; use the new server.ping() method
instead.

4.7. Electrum Protocol 49

ElectrumX Documentation, Release ElectrumX 1.9.5

New methods

• blockchain.block.headers()

• mempool.get_fee_histogram()

• server.ping()

Deprecated methods

• blockchain.block.get_chunk(). Switch to blockchain.block.headers()

• blockchain.address.get_balance(). Switch to blockchain.scripthash.
get_balance().

• blockchain.address.get_history(). Switch to blockchain.scripthash.
get_history().

• blockchain.address.get_mempool(). Switch to blockchain.scripthash.
get_mempool().

• blockchain.address.listunspent(). Switch to blockchain.scripthash.
listunspent().

• blockchain.address.subscribe(). Switch to blockchain.scripthash.subscribe().

• blockchain.headers.subscribe() with raw other than True.

Version 1.3

Changes

• blockchain.headers.subscribe() argument raw switches default to True

New methods

• blockchain.block.header()

Removed methods

• blockchain.address.get_balance()

• blockchain.address.get_history()

• blockchain.address.get_mempool()

• blockchain.address.listunspent()

• blockchain.address.subscribe()

Deprecated methods

• blockchain.block.get_header(). Switch to blockchain.block.header().

50 Chapter 4. Documentation

ElectrumX Documentation, Release ElectrumX 1.9.5

Version 1.4

This version removes all support for deserialized headers.

Changes

• Deserialized headers are no longer available, so removed argument raw from blockchain.headers.
subscribe().

• Only the first server.version() message is accepted.

• Optional cp_height argument added to blockchain.block.header() and blockchain.block.
headers() to return merkle proofs of the header to a given checkpoint.

New methods

• blockchain.transaction.id_from_pos() to return a transaction hash, and optionally a merkle
proof, given a block height and position in the block.

Removed methods

• blockchain.block.get_header()

• blockchain.block.get_chunk()

Version 1.4.1

Changes

• blockchain.block.header() and blockchain.block.headers() now truncate AuxPoW data
(if using an AuxPoW chain) when cp_height is nonzero. AuxPoW data is still present when cp_height is zero.
Non-AuxPoW chains are unaffected.

Version 1.5

Note: This is a draft of ideas for protocol 1.5; they are not implemented

This protocol version makes changes intended to allow clients and servers to more easily scale to support queries about
busy addresses. It has changes to reduce the amount of round-trip queries made in common usage, and to make results
more compact to reduce bandwidth consumption.

RPC calls with potentially large responses have pagination support, and the return value of blockchain.
scripthash.subscribe() changes. Script hash status had to be recalculated with each new transaction and
was undefined if it included more than one mempool transaction. Its calculation is linear in history length resulting in
quadratic complexity as history grows. Its calculation for large histories was demanding for both the server to compute
and the client to check.

RPC calls and notifications that combined the effects of the mempool and confirmed history are removed.

The changes are beneficial to clients and servers alike, but will require changes to both client-side and server-side
logic. In particular, the client should track what block (by hash and height) wallet data is synchronized to, and if that

4.7. Electrum Protocol 51

ElectrumX Documentation, Release ElectrumX 1.9.5

hash is no longer part of the main chain, it will need to remove wallet data for blocks that were reorganized away and
get updated information as of the first reorganized block. The effects are limited to script hashes potentially affected
by the reorg, and for most clients this will be the empty set.

New methods

• blockchain.scripthash.history()

• blockchain.scripthash.utxos()

New notifications

• mempool.changes()

Changes

• blockchain.scripthash.subscribe() has changed its return value and the notifications it sends

• blockchain.transaction.get() takes an additional optional argument merkle

Removed methods

• blockchain.scripthash.get_history(). Switch to blockchain.scripthash.history()

• blockchain.scripthash.get_mempool(). Switch to handling mempool.changes() notifica-
tions

• blockchain.scripthash.listunspent(). Switch to blockchain.scripthash.utxos()

4.7.4 Removed Protocol Methods

This documents protocol methods that are still supported in some protocol versions, but not the most recent one.

Deserialized Headers

A deserialized header is a dictionary describing a block at a given height.

A typical example would be similar to this template:

{
"block_height": <integer>,
"version": <integer>,
"prev_block_hash": <hexadecimal string>,
"merkle_root": <hexadecimal string>,
"timestamp": <integer>,
"bits": <integer>,
"nonce": <integer>

}

52 Chapter 4. Documentation

ElectrumX Documentation, Release ElectrumX 1.9.5

Note: The precise format of a deserialized block header varies by coin, and also potentially by height for the same
coin. Detailed knowledge of the meaning of a block header is neither necessary nor appropriate in the server. Conse-
quently they were removed from the protocol in version 1.4.

blockchain.address.get_balance

Return the confirmed and unconfirmed balances of a bitcoin address.

Signature

blockchain.address.get_balance(address)

Deprecated since version 1.2: removed in version 1.3

• address

The address as a Base58 string.

Result

See blockchain.scripthash.get_balance().

blockchain.address.get_history

Return the confirmed and unconfirmed history of a bitcoin address.

Signature

blockchain.address.get_history(address)

Deprecated since version 1.2: removed in version 1.3

• address

The address as a Base58 string.

Result

As for blockchain.scripthash.get_history().

blockchain.address.get_mempool

Return the unconfirmed transactions of a bitcoin address.

Signature

blockchain.address.get_mempool(address)

Deprecated since version 1.2: removed in version 1.3

• address

The address as a Base58 string.

Result

As for blockchain.scripthash.get_mempool().

4.7. Electrum Protocol 53

ElectrumX Documentation, Release ElectrumX 1.9.5

blockchain.address.listunspent

Return an ordered list of UTXOs sent to a bitcoin address.

Signature

blockchain.address.listunspent(address)

Deprecated since version 1.2: removed in version 1.3

• address

The address as a Base58 string.

Result

As for blockchain.scripthash.listunspent().

blockchain.address.subscribe

Subscribe to a bitcoin address.

Signature

blockchain.address.subscribe(address)

Deprecated since version 1.2: removed in version 1.3

address

The address as a Base58 string.

Result

The status of the address.

Notifications

As this is a subcription, the client will receive a notification when the status of the address changes. Its
signature is

blockchain.address.subscribe(address, status)

blockchain.headers.subscribe

Subscribe to receive block headers when a new block is found.

Signature

Changed in version 1.2: Optional raw parameter added, defaulting to false.

Changed in version 1.3: raw parameter deafults to true.

Changed in version 1.4: raw parameter removed; responses and notifications pass raw headers.

• raw

This single boolean argument exists in protocol versions 1.2 (defaulting to false) and 1.3 (default-
ing to true) only.

Result

The header of the current block chain tip. If raw is true the result is a dictionary with two members:

54 Chapter 4. Documentation

ElectrumX Documentation, Release ElectrumX 1.9.5

• hex

The binary header as a hexadecimal string.

• height

The height of the header, an integer.

If raw is false the result is the coin-specific deserialized header.

Example Result

With raw false:

{
"bits": 402858285,
"block_height": 520481,
"merkle_root":

→˓"8e8e932eb858fd53cf09943d7efc9a8f674dc1363010ee64907a292d2fb0c25d",
"nonce": 3288656012,
"prev_block_hash":

→˓"000000000000000000b512b5d9fc7c5746587268547c04aa92383aaea0080289",
"timestamp": 1520495819,
"version": 536870912

}

With raw true:

{
"height": 520481,
"hex":

→˓"00000020890208a0ae3a3892aa047c5468725846577cfcd9b512b50000000000000000005dc2b02f2d297a9064ee103036c14d678f9afc7e3d9409cf53fd58b82e938e8ecbeca05a2d2103188ce804c4
→˓"
}

Notifications

As this is a subcription, the client will receive a notification when a new block is found. The notification’s
signature is:

• header

See Result above.

Note: should a new block arrive quickly, perhaps while the server is still processing prior blocks, the server may only
notify of the most recent chain tip. The protocol does not guarantee notification of all intermediate block headers.

In a similar way the client must be prepared to handle chain reorganisations. Should a re-org happen the new chain tip
will not sit directly on top of the prior chain tip. The client must be able to figure out the common ancestor block and
request any missing block headers to acquire a consistent view of the chain state.

blockchain.numblocks.subscribe

Subscribe to receive the block height when a new block is found.

Signature

blockchain.numblocks.subscribe()

Deprecated since version 1.0: removed in version 1.1

4.7. Electrum Protocol 55

ElectrumX Documentation, Release ElectrumX 1.9.5

Result

The height of the current block, an integer.

Notifications

As this is a subcription, the client will receive a notification when a new block is found. The notification’s
signature is:

blockchain.numblocks.subscribe(height)

blockchain.utxo.get_address

Return the address paid to by a UTXO.

Signature

blockchain.utxo.get_address(tx_hash, index)
Optional in version 1.0, removed in version 1.1

tx_hash

The transaction hash as a hexadecimal string.

index

The zero-based index of the UTXO in the transaction.

Result

A Base58 address string, or null. If the transaction doesn’t exist, the index is out of range, or the output
is not paid to an address, null must be returned. If the output is spent null may be returned.

blockchain.block.get_header

Return the deserialized header of the block at the given height.

Signature

blockchain.block.get_header(height)

Deprecated since version 1.3: removed in version 1.4

height

The height of the block, an integer.

Result

The coin-specific deserialized header.

Example Result

{
"bits": 392292856,
"block_height": 510000,
"merkle_root": "297cfcc6a66e063692b20650d21cc0ac7a2a80f7277ebd7c5d6c7010a070d25c",
"nonce": 3347656422,
"prev_block_hash": "0000000000000000002292de0d9f03dfa15a04dbf09102d5d4552117b717fa86

→˓",
"timestamp": 1519083654,
"version": 536870912

}

56 Chapter 4. Documentation

ElectrumX Documentation, Release ElectrumX 1.9.5

blockchain.block.get_chunk

Return a concatenated chunk of block headers from the main chain. Typically, a chunk consists of a fixed number of
block headers over which difficulty is constant, and at the end of which difficulty is retargeted.

In the case of Bitcoin a chunk is 2,016 headers, each of 80 bytes, so chunk 5 consists of the block headers from height
10,080 to 12,095 inclusive. When encoded as hexadecimal, the result string is twice as long, so for Bitcoin it takes
322,560 bytes, making this a bandwidth-intensive request.

Signature

blockchain.block.get_chunk(index)

Deprecated since version 1.2: removed in version 1.4

index

The zero-based index of the chunk, an integer.

Result

The binary block headers as hexadecimal strings, in-order and concatenated together. As many as headers
as are available at the implied starting height will be returned; this may range from zero to the coin-specific
chunk size.

server.version

Identify the client to the server and negotiate the protocol version.

Signature

Changed in version 1.1: protocol_version is not ignored.

Changed in version 1.2: Use server.ping() rather than sending version requests as a ping mecha-
nism.

Changed in version 1.4: Only the first server.version() message is accepted.

• client_name

A string identifying the connecting client software.

• protocol_version

An array [protocol_min, protocol_max], each of which is a string. If protocol_min
and protocol_max are the same, they can be passed as a single string rather than as an array of
two strings, as for the default value.

The server should use the highest protocol version both support:

version = min(client.protocol_max, server.protocol_max)

If this is below the value:

max(client.protocol_min, server.protocol_min)

then there is no protocol version in common and the server must close the connection. Otherwise it should
send a response appropriate for that protocol version.

Result

An array of 2 strings:

4.7. Electrum Protocol 57

ElectrumX Documentation, Release ElectrumX 1.9.5

[server_software_version, protocol_version]

identifying the server and the protocol version that will be used for future communication.

Protocol version 1.0: A string identifying the server software.

Examples:

server.version("Electrum 3.0.6", ["1.1", "1.2"])
server.version("2.7.1", "1.0")

Example Results:

["ElectrumX 1.2.1", "1.2"]
"ElectrumX 1.2.1"

4.8 Peer Discovery

This was imlpemented in ElectrumX as of version 0.11.0. Support for IRC peer discovery was removed in ElectrumX
version 1.2.1.

The peer database is an in-memory store of peers with at least the following information about a peer, required for a
response to the server.peers.subscribe() RPC call:

• host name

• ip address

• TCP and SSL port numbers

• protocol version

• pruning limit, if any

4.8.1 Hard-coded Peers

A list of hard-coded, well-known peers seeds the peer discovery process. Ideally it should have at least 4 servers that
have shown commitment to reliable service.

In ElectrumX this is a per-coin property in lib/coins.py.

4.8.2 server.peers.subscribe

server.peers.subscribe() is used by Electrum clients to get a list of peer servers, in preference to a hard-
coded list of peer servers in the client, which it will fall back to if necessary.

The server should craft its response in a way that reduces the effectiveness of server sybil attacks and peer spamming.

The response should only include peers it has successfully connected to recently. Only reporting recent good peers
ensures that those that have gone offline will be forgotten quickly and not be passed around for long.

In ElectrumX, “recently” is taken to be the last 24 hours. Only one peer from each IPv4/16 netmask is returned, and
the number of onion peers is limited.

58 Chapter 4. Documentation

https://github.com/kyuupichan/electrumx/blob/master/lib/coins.py

ElectrumX Documentation, Release ElectrumX 1.9.5

4.8.3 Maintaining the Peer Database

In order to keep its peer database up-to-date and fresh, after some time has passed since the last successful connection
to a peer, an Electrum server should make another attempt to connect, choosing either the TCP or SSL port.

On connecting it should issue server.peers.subscribe(), blockchain.headers.subscribe(), and
server.features() RPC calls to collect information about the server and its peers. If the peer seems to not know
of you, you can issue a server.add_peer() call to advertise yourself. Once this is done and replies received,
terminate the connection.

The peer database should view information obtained from an outgoing connection as authoritative, and prefer it to
information obtained from any other source.

On connecting, a server should confirm the peer is serving the same network, ideally via the genesis block hash of
the server.features() RPC call below. Also the height reported by the peer should be within a small number
of the expected value. If a peer is on the wrong network it should never be advertised to clients or other peers. Such
invalid peers should perhaps be remembered for a short time to prevent redundant revalidation if other peers persist in
advertising them, and later forgotten.

If a connection attempt fails, subsequent reconnection attempts should follow some kind of exponential backoff.

If a long period of time has elapsed since the last successful connection attempt, the peer entry should be removed from
the database. This ensures that all peers that have gone offline will eventually be forgotten by the network entirely.

ElectrumX will connect to the SSL port if both ports are available. If that fails it will fall back to the TCP port. It tries
to reconnect to a good peer at least once every 24 hours, and a failing after 5 minutes but with exponential backoff.
It forgets a peer entirely if a few days have passed since a successful connection. ElectrumX attempts to connect to
onion peers through a Tor proxy that can be configured or that it will try to autodetect.

4.8.4 server.features

server.features() is a fairly new RPC call that a server can use to advertise what services and features it offers.
It is intended for use by Electrum clients as well as other peers. Peers will use it to gather peer information from the
peer itself.

The call takes no arguments and returns a dictionary keyed by feature name whose value gives details about the feature
where appropriate. If a key is missing the feature is presumed not to be offered.

4.8.5 server.add_peer

server.add_peer() is intended for a new server to get itself in the connected set.

A server receiving a server.add_peer() call should not replace existing information about the host(s) given, but
instead schedule a separate connection to verify the information for itself.

To prevent abuse a server may do nothing with second and subsequent calls to this method from a single connection.

The result should be True if accepted and False otherwise.

4.8.6 Notes for Implementors

• it is very important to only accept peers that appear to be on the same network. At a minimum the genesis hash
should be compared (if the peer supports server.features()), and also that the peer’s reported height is
within a few blocks of your own server’s height.

4.8. Peer Discovery 59

ElectrumX Documentation, Release ElectrumX 1.9.5

• care should be taken with the server.add_peer() call. Consider only accepting it once per connection.
Clearnet peer requests should check the peer resolves to the requesting IP address, to prevent attackers from
being able to trigger arbitrary outgoing connections from your server. This doesn’t work for onion peers so they
should be rate-limited.

• it should be possible for a peer to change their port assignments - presumably connecting to the old ports to
perform checks will not work.

• peer host names should be checked for validity before accepting them; and localhost should probably be rejected.
If it is an IP address it should be a normal public one (not private, multicast or unspecified).

• you should limit the number of new peers accepted from any single source to at most a handful, to limit the
effectiveness of malicious peers wanting to trigger arbitrary outgoing connections or fill your peer tables with
junk data.

• in the response to server.peers.subscribe() calls, consider limiting the number of peers on similar IP
subnets to protect against sybil attacks, and in the case of onion servers the total returned.

• you should not advertise a peer’s IP address if it also advertises a hostname (avoiding duplicates).

4.9 RPC Interface

You can query the status of a running server, and affect its behaviour by sending JSON RPC commands to the
LocalRPC port it is listening on. This is best done using the electrumx_rpc script provided.

The general form of invocation is:

electrumx_rpc [-p PORT] <command> [arg1 [arg2...]]

The port to send the commands to can be specified on the command line, otherwise the environment variable
RPC_PORT is used, and if that is not set then 8000 is assumed.

The following commands are available:

4.9.1 add_peer

Add a peer to the peers list. ElectrumX will schdule an immediate connection attempt. This command takes a single
argument: the peer’s “real name” as it used to advertise itself on IRC:

$ electrumx_rpc add_peer "ecdsa.net v1.0 s110 t"
"peer 'ecdsa.net v1.0 s110 t' added"

4.9.2 daemon_url

This command takes an optional argument that is interpreted identically to the DAEMON_URL environment variable.
If omitted, the default argument value is the process’s existing DAEMON_URL environment variable.

This command replaces the daemon’s URL at run-time, and also forecefully rotates to the first URL in the list.

For example, in case ElectrumX has previously failed over to a secondary daemon and you want to revert to the
primary having resolved the connectivity issue, invoking this command without an argument will have that effect.

60 Chapter 4. Documentation

ElectrumX Documentation, Release ElectrumX 1.9.5

4.9.3 disconnect

Disconnect the given session IDs. Session IDs can be seen in the logs or with the sessions RPC command:

$ electrumx_rpc disconnect 2 3
[

"disconnected 2",
"disconnected 3"

]

ElectrumX initiates the socket close process for the passed sessions. Whilst most connections close quickly, it can
take several minutes for Python to shut some SSL connections down.

4.9.4 getinfo

Return a summary of server state. This command takes no arguments. A typical result is as follows (with annotated
comments):

$ electrumx_rpc getinfo
{

"closing": 1, # The number of sessions being closed down
"daemon": "192.168.0.2:8332/", # The daemon URL without auth info
"daemon_height": 520527, # The daemon's height when last queried
"db_height": 520527, # The height to which the DB is flushed
"errors": 0, # Errors across current sessions
"groups": 7, # The number of session groups
"logged": 0, # The number of sessions being logged
"paused": 0, # The number of paused sessions
"peers": { # Various categories of server peers

"bad": 0, # Not responding or invalid height etc.
"good": 28, # Responding with good data
"never": 0, # Never managed to connect
"stale": 0, # Was "good" but not recently connected
"total": 28 # Sum of the above

},
"pid": 85861, # Server's process ID
"requests": 0, # Unprocessed requests across all sessions
"sessions": 43, # Total number of sessions
"sessions_with_subs": 4, # Number of sessions with history subscriptions
"subs": 84, # Script hash subscriptions across all sessions
"txs_sent": 4, # Transactions sent since server started
"uptime": "06h 48m 00s" # Time since server started

}

Each ill-formed request, or one that does not follow the Electrum protocol, increments the error count of the session
that sent it. If the error count reaches a certain level (currently 10) that client is disconnected.

logging of sessions can be enabled by RPC.

For more information on peers see here.

Clients that are slow to consume data sent to them are paused until their socket buffer drains sufficiently, at which
point processing of requests resumes.

Apart from very short intervals, typically after a new block or when a client has just connected, the number of unpro-
cessed requests should normally be zero.

Sessions are put into groups, primarily as an anti-DoS measure. Initially all connections made within a period of time
are put in the same group. High bandwidth usage by a member of a group deprioritizes that session, and all members of

4.9. RPC Interface 61

ElectrumX Documentation, Release ElectrumX 1.9.5

its group to a lesser extent. Low-priority sessions have their requests served after higher priority sessions. ElectrumX
will start delaying responses to a session if it becomes sufficiently deprioritized.

4.9.5 groups

Return a list of all current session groups. Takes no arguments.

The output is quite similar to the sessions command.

4.9.6 log

Toggle logging of the given session IDs. All incoming requests for a logged session are written to the server log.
Session IDs can be seen in the logs or with the sessions RPC command:

$ electrumx_rpc log 0 1 2 3 4 5
[

"log 0: False",
"log 1: False",
"log 2: False",
"log 3: True",
"log 4: True",
"unknown session: 5"

]

The return value shows this command turned off logging for sesssions 0, 1 and 2. It was turned on for sessions 3 and
4, and there was no session 5.

4.9.7 peers

Return a list of peer Electrum servers serving the same coin network. This command takes no arguments.

Peer data is obtained via a peer discovery protocol documented here:

$ electrumx_rpc peers
Host Status TCP SSL Server Min Max
→˓Pruning Last Good Last Try Tries Source IP Address
bch.tedy.pw good 50001 50002 ElectrumX 1.2.1 0.9 1.2
→˓ 07h 29m 23s 07h 30m 40s 0 peer 185.215.224.26
shsmithgoggryfbx.onion good 60001 60002 ElectrumX 1.2.1 0.9 1.2
→˓ 07h 30m 34s 07h 30m 38s 0 peer
bccarihace4jdcnt.onion good 52001 52002 ElectrumX 1.2.1 0.9 1.2
→˓ 07h 30m 34s 07h 30m 39s 0 peer
[...]
electroncash.checksum0.com good 50001 50002 ElectrumX 1.2.1 0.9 1.1
→˓ 07h 30m 40s 07h 30m 41s 0 peer 149.56.198.233

4.9.8 query

Run a query of the UTXO and history databases against one or more addresses or hex scripts. –limit <N> or -l <N>
limits the output for each kind to that many entries. History is printed in blockchain order; UTXOs in an arbitrary
order.

For example:

62 Chapter 4. Documentation

ElectrumX Documentation, Release ElectrumX 1.9.5

$ electrumx_rpc query --limit 5 76a91462e907b15cbf27d5425399ebf6f0fb50ebb88f1888ac
Script: 76a91462e907b15cbf27d5425399ebf6f0fb50ebb88f1888ac
History #1: height 123,723 tx_hash
→˓3387418aaddb4927209c5032f515aa442a6587d6e54677f08a03b8fa7789e688
History #2: height 127,280 tx_hash
→˓4574958d135e66a53abf9c61950aba340e9e140be50efeea9456aa9f92bf40b5
History #3: height 127,909 tx_hash
→˓8b960c87f9f1a6e6910e214fcf5f9c69b60319ba58a39c61f299548412f5a1c6
History #4: height 127,943 tx_hash
→˓8f6b63012753005236b1b76e4884e4dee7415e05ab96604d353001662cde6b53
History #5: height 127,943 tx_hash
→˓60ff2dfdf67917040139903a0141f7525a7d152365b371b35fd1cf83f1d7f704
UTXO #1: tx_hash 9aa497bf000b20f5ec5dc512bb6c1b60b68fc584d38b292b434e839ea8807bf0 tx_
→˓pos 0 height 254,148 value 5,500
UTXO #2: tx_hash 1c998142a5a5aae6f8c1eab245351413fe8d4032a3f14345f9943a0d0bc90ec0 tx_
→˓pos 0 height 254,161 value 5,500
UTXO #3: tx_hash 53345491b4829140be53f30079c6e4556a18545343b122900ebbfa158f9ca97a tx_
→˓pos 0 height 254,163 value 5,500
UTXO #4: tx_hash c71ad947ac46af217da3cd5521113cbd03e36ddada2b4452afe6c15f944d2529 tx_
→˓pos 0 height 372,916 value 1,000
UTXO #5: tx_hash c944a6acac054275a5e294e746d9ce79f6dcae91f3b4f5a84561aee6404a55b3 tx_
→˓pos 0 height 254,148 value 5,500
Balance: 17.8983303 BCH

4.9.9 reorg

Force a block chain reorganisation, primarily for debugging purposes. This command takes an optional argument - the
number of blocks to reorg - which defaults to 3.

That number of blocks will be backed up - using undo information stored in ElectrumX’s database - and then Elec-
trumX will move forwards on the daemon’s main chain to its current height.

4.9.10 sessions

Return a list of all current sessions. Takes no arguments:

ID Flags Client Proto Reqs Txs Subs Recv Recv KB Sent Sent
→˓KB Time Peer
110 S1 2.9.4 0.10 0 0 0 403 28 442
→˓37 06h41m41s xxx.xxx.xxx.xxx:xx
282 S1 3.1.5 1.1 0 0 0 380 25 417
→˓40 06h21m38s xxx.xxx.xxx.xxx:xx
300 S1 2.9.4 0.10 0 0 0 381 25 418
→˓34 06h19m35s xxx.xxx.xxx.xxx:xx
[...]
3313 S1 2.9.3 0.10 0 0 0 22 1 22
→˓ 6 07s xxx.xxx.xxx.xxx:xx
4 R0 RPC RPC 0 0 0 1 0 0
→˓ 0 00s [::1]:62479

The columns show information by session: the session ID, flags (see below), how the client identifies itself - typically
the Electrum client version, the protocol version negotiated, the number of unprocessed requests, the number of
transactions sent, the number of address subscriptions, the number of requests received and their total size, the number
of messages sent and their size, how long the client has been connected, and the client’s IP address (if anonymous
logging is disabled).

4.9. RPC Interface 63

ElectrumX Documentation, Release ElectrumX 1.9.5

The flags are:

• S an SSL connection

• T a TCP connection

• R a local RPC connection

• L a logged session

• C a connection that is being closed

• the non-negative number is the connection “cost”, with lower numbers having higher priority. RPC connections
have cost 0, normal connections have cost at least 1.

4.9.11 stop

Flush all cached data to disk and shut down the server cleanly, as if sending the KILL signal. Be patient - during initial
sync flushing all cached data to disk can take several minutes. This command takes no arguments.

4.10 Architecture

64 Chapter 4. Documentation

https://docs.google.com/drawings/d/1Su_DR2c8__-4phm12hAzV65fL2tNm_1IhKr4XivkW6Q/pub?w=960&h=720

ElectrumX Documentation, Release ElectrumX 1.9.5

4.10.1 Env

Holds configuration taken from the environment, with apprioriate defaulting appropriately. Generally passed to the
constructor of other components which take their settings from it.

4.10.2 Controller

The central part of the server process initialising and coordinating all the others. Manages resource usage.

4.10.3 LocalRPC

Handles local JSON RPC connections querying ElectrumX server state. Started when the ElectrumX process starts.

4.10.4 ElectrumX

Handles JSON Electrum client connections over TCP or SSL. One instance per client session. Should be the only
component concerned with the details of the Electrum wire protocol.

Not started until the Block Processor has caught up with bitcoind.

4.10.5 Daemon

Encapsulates the RPC wire protocol with bitcoind for the whole server. Transparently handles temporary bitcoind
connection errors, and fails over if necessary.

Notifies the Mempool when the list of mempool transaction hashes is updated.

4.10.6 Block Processor

Responsible for managing block chain state (UTXO set, history, transaction and undo information) and for handling
block chain reorganisations.

When caught up, processes new blocks as they are found, and flushes the updates to the Database immediately.

When syncing uses caches for in-memory state updates since the prior flush. Occasionally flushes state to the storage
layer when caches get large.

4.10.7 Prefetcher

Cooperates with the Block Processor to asynchronously prefetch blocks from bitcoind. Once it has caught up it
additionally asks the Daemon to refresh its view of bitcoind’s mempool transaction hashes. Serves blocks to the Block
Processor via a queue.

4.10.8 Mempool

Handles all the details of maintaining a representation of bitcoind’s mempool state. Obtains the list of current mempool
transaction hashes from the Daemon when notified by the Prefetcher.

Notifies the Controller that addresses have been touched when the mempool refreshes (or implicitly when a new block
is found).

4.10. Architecture 65

ElectrumX Documentation, Release ElectrumX 1.9.5

4.10.9 Database

The underlying data store, made up of the DB backend (such as leveldb) and the host filesystem.

4.11 Authors

• Neil Booth

Creator and maintainer.

• Johann Bauer

Backend DB abstraction.

• John Jegutanis

Alt-chain integrations.

66 Chapter 4. Documentation

CHAPTER 5

Indices and tables

• genindex

• search

67

ElectrumX Documentation, Release ElectrumX 1.9.5

68 Chapter 5. Indices and tables

Index

A
ANON_LOGS, 22

B
BANNER_FILE, 22
blockchain.address.get_balance() (built-in

function), 53
blockchain.address.get_history() (built-in

function), 53
blockchain.address.get_mempool() (built-in

function), 53
blockchain.address.listunspent() (built-in

function), 54
blockchain.address.subscribe() (built-in

function), 54
blockchain.block.get_chunk() (built-in func-

tion), 57
blockchain.block.get_header() (built-in

function), 56
blockchain.block.header() (built-in function),

28
blockchain.block.headers() (built-in func-

tion), 29
blockchain.estimatefee() (built-in function),

30
blockchain.headers.subscribe() (built-in

function), 30, 31
blockchain.numblocks.subscribe() (built-in

function), 55, 56
blockchain.relayfee() (built-in function), 31
blockchain.scripthash.get_balance()

(built-in function), 31
blockchain.scripthash.get_history()

(built-in function), 32
blockchain.scripthash.get_mempool()

(built-in function), 32
blockchain.scripthash.history() (built-in

function), 33
blockchain.scripthash.listunspent()

(built-in function), 34
blockchain.scripthash.subscribe() (built-

in function), 35
blockchain.scripthash.utxos() (built-in

function), 35
blockchain.transaction.broadcast()

(built-in function), 36
blockchain.transaction.get() (built-in func-

tion), 37
blockchain.transaction.get_merkle()

(built-in function), 38
blockchain.transaction.id_from_pos()

(built-in function), 39
blockchain.utxo.get_address() (built-in

function), 56

C
CACHE_MB, 17
COIN, 20–22

D
DAEMON_URL, 60
DB_CACHE, 17
DB_DIRECTORY, 22
DONATION_ADDRESS, 22

E
environment variable

ALLOW_ROOT, 21
ANON_LOGS, 22
BANDWIDTH_LIMIT, 23
BANNER_FILE, 22
BLACKLIST_URL, 24
CACHE_MB, 17, 25
COIN, 20–22
DAEMON_URL, 20, 60
DB_CACHE, 17
DB_DIRECTORY, 20, 22
DB_ENGINE, 21
DONATION_ADDRESS, 21, 22

69

ElectrumX Documentation, Release ElectrumX 1.9.5

DROP_CLIENT, 22
ELECTRUMX, 21
EVENT_LOOP_POLICY, 22
FORCE_PROXY, 24
HOST, 21
LOG_FORMAT, 21
LOG_SESSIONS, 22
MAX_SEND, 23
MAX_SESSION_SUBS, 23
MAX_SESSIONS, 22
MAX_SUBS, 23
NET, 20–22
PEER_ANNOUNCE, 23
PEER_DISCOVERY, 23
REORG_LIMIT, 22
REPORT_HOST, 24
REPORT_HOST_TOR, 24
REPORT_SSL_PORT, 24
REPORT_SSL_PORT_TOR, 24
REPORT_TCP_PORT, 24
REPORT_TCP_PORT_TOR, 24
RPC_HOST, 21
RPC_PORT, 21, 60
SESSION_TIMEOUT, 23
SSL_CERTFILE, 19, 21
SSL_KEYFILE, 19, 21
SSL_PORT, 19, 21, 24
TCP_PORT, 21, 24
TOR_BANNER_FILE, 22
TOR_PROXY_HOST, 24
TOR_PROXY_PORT, 24
USERNAME, 21

H
HOST, 21

M
masternode.announce.broadcast() (built-in

function), 45
masternode.list() (built-in function), 46
masternode.subscribe() (built-in function), 45
MAX_SEND, 23
mempool.changes() (built-in function), 40
mempool.get_fee_histogram() (built-in func-

tion), 41

N
NET, 20–22

P
protx.diff() (built-in function), 47
protx.info() (built-in function), 48

R
REPORT_HOST, 24
REPORT_SSL_PORT, 24
REPORT_SSL_PORT_TOR, 24
REPORT_TCP_PORT, 24
RPC_PORT, 60

S
server.add_peer() (built-in function), 41
server.banner() (built-in function), 42
server.donation_address() (built-in function),

42
server.features() (built-in function), 42
server.peers.subscribe() (built-in function),

43
server.ping() (built-in function), 44
server.version() (built-in function), 44
SSL_CERTFILE, 19, 21
SSL_KEYFILE, 19, 21
SSL_PORT, 19, 21, 24

T
TCP_PORT, 21, 24

70 Index

	Source Code
	Authors and License
	Getting Started
	Documentation
	Features
	Implementation
	Roadmap
	ChangeLog
	HOWTO
	Environment Variables
	Electrum Protocol
	Peer Discovery
	RPC Interface
	Architecture
	Authors

	Indices and tables

